# PROGRAMMABLE CONTROLLER prosec T3H 

## USER'S MANUAL

## Important Information

Misuse of this equipment can result in property damage or human injury. Because controlled system applications vary widely, you should satisfy yourself as to the acceptability of this equipment for your intended purpose.
In no event will Toshiba Corporation be responsible or liable for either indirect or consequential damage or injury that may result from the use of this equipment.

No patent liability is assumed by Toshiba Corporation with respect to use of information, illustrations, circuits, equipment or examples of application in this publication.

Toshiba Corporation reserves the right to make changes and improvements to this publication and/or related products at any time without notice. No obligation shall be incurred other than as noted in this publication.

This publication is copyrighted and contains proprietary material. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means - electrical, mechanical, photocopying, recording, or otherwise - without obtaining prior written permission from Toshiba Corporation.
© TOSHIBA Corporation 1996. All rights reserved

Ethernet is a registered trademark of Xerox Corporation.
PROSEC and TOSLINE are registered trademarks of TOSHIBA Corporation.

Publication number: UM-TS03***-E032
1st edition June 1996

## Safety Precautions

This manual is prepared for users of Toshiba's Programmable Controller T3H. Read this manual thoroughly before using the T3H. Also, keep this manual and related manuals so that you can read them anytime while the T3H is in operation.

## General Information

1. The T 3 H has been designed and manufactured for use in an industrial environment. However, the T3H is not intended to be used for systems which may endanger human life. Consult Toshiba if you intend to use the T3H for a special application, such as transportation machines, medical apparatus, aviation and space systems, nuclear controls, submarine systems, etc.
2. The T3H has been manufactured under strict quality control. However, to keep safety of overall automated system, fail-safe systems should be considered outside the T3H.
3. In installation, wiring, operation and maintenance of the T3H, it is assumed that the users have general knowledge of industrial electric control systems.
If this product is handled or operated improperly, electrical shock, fire or damage to this product could result.
4. This manual has been written for users who are familiar with Programmable Controllers and industrial control equipment. Contact Toshiba if you have any questions about this manual.
5. Sample programs and circuits described in this manual are provided for explaining the operations and applications of the T3H. You should test completely if you use them as a part of your application system.

## Hazard Classifications

In this manual, the following two hazard classifications are used to explain the safety precautions.

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
\. CAUTION
Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

Even a precaution is classified as CAUTION, it may cause serious results depending on the situation. Observe all the safety precautions described on this manual.

## Safety Precautions

## Safety Precautions

## Installation:

## $\triangle$ CAUTION

1. Excess temperature, humidity, vibration, shocks, or dusty and corrosive gas environment can cause electrical shock, fire or malfunction. Install and use the T3H and in the environment described in the T3 User's Manual - Hardware.
2. Improper installation directions or insufficient installation can cause fire or the units to drop. Install the T3H in accordance with the instructions described in the T3 User's Manual - Hardware -.
3. Turn off power before installing or removing any units, modules or terminal blocks. Failure to do so can cause electrical shock or damage to the T3H and related equipment.
4. Entering wire scraps or other foreign debris into to the T3H and related equipment can cause fire or malfunction. Pay attention to prevent entering them into the T3H and related equipment during installation and wiring.

## Wiring:

## $\triangle$ CAUTION

1. Turn off power before wiring to minimize the risk of electrical shock.
2. Exposed conductive parts of wire can cause electrical shock. Use crimp-style terminals with insulating sheath or insulating tape to cover the conductive parts. Also close the terminal covers securely on the terminal blocks when wiring has been completed.
3. Operation without grounding may cause electrical shock or malfunction. Connect the ground terminal on the T3H to the system ground.
4. Applying excess power voltage to the T3H can cause explosion or fire. Apply power of the specified ratings described in the T3 User's Manual - Hardware.
5. Improper wiring can cause fire, electrical shock or malfunction. Observe local regulations on wiring and grounding.

## Safety Precautions

## Operation:

## $\triangle$ WARNING

1. Configure emergency stop and safety interlocking circuits outside the T3H. Otherwise, malfunction of the T3H can cause injury or serious accidents.

## $\triangle$ CAUTION

2. Operate the T3H and the related modules with closing the terminal covers. Keep hands away from terminals while power on, to avoid the risk of electrical shock.
3. When you attempt to perform force outputs, RUN/HALT controls, etc. during operation, carefully check for safety.
4. Turn on power to the T3H before turning on power to the loads. Failure to do so may cause unexpected behavior of the loads.
5. Set operation mode switches of the T3H and I/O modules. Improper switch settings may cause malfunction of the T 3 H and related equipment.
6. Do not use any modules of the T3H for the purpose other than specified. This can cause electrical shock or injury.
7. Configure the external circuit so that the external power required for output modules and power to the loads are switched on/off simultaneously.
Also, turn off power to the loads before turning off power to the T3H.
8. Install fuses appropriate to the load current in the external circuits for the relay output modules. Failure to do so can cause fire in case of load over-current.
9. Check for proper connections on wires, connectors and modules. Insufficient contact can cause malfunction or damage to the T 3 H and related equipment.
10.Turn off power immediately if the T3H is emitting smoke or odor. Operation under such condition can cause fire or electrical shock.
Also unauthorized repairing will cause fire or serious accidents. Do not attempt to repair. Contact Toshiba for repairing.

## Safety Precautions

## Maintenance:

## $\triangle$ CAUTION

1. Do not charge, disassemble, dispose in a fire nor short-circuit the batteries. It can cause explosion or fire. Observe local regulations for disposal of them.
2. Turn off power before removing or replacing units, terminal blocks or wires. Failure to do so can cause electrical shock or damage to the T3H and related equipment.
3. Replace a blown fuse with a specified one. Failure to do so can cause fire or damage to the T3H.
4. Perform daily checks, periodical checks and cleaning to maintain the system in normal condition and to prevent unnecessary troubles.
5. Check by referring "Troubleshooting" section of the T3 User's Manual - Hardware, when operating improperly. Contact Toshiba for repairing if the T3H or related equipment is failed. Toshiba will not guarantee proper operation nor safety for unauthorized repairing.
6. The contact reliability of the relays used in the relay output module will reduce if the switching exceeds the specified life. Replace the module if exceeded.
7. Replace the battery every 2 years to maintain the T3H's program and data normally.
8. Do not modify the T3H and related equipment in hardware nor software. This can cause fire, electrical shock or injury.
9. Pay special attention for safety if you attempt to measure circuit voltage at the T3H's terminal.
10. Turn off power before replacing modules. Failure to do so can cause electrical shock or damage to the T3H and related equipment. If you attempt to replace an I/O module while power on (by using on-line I/O replacement function), carefully check for safety.

## Safety Precautions

## Safety Label

The safety label as shown on the right is attached to the power terminal of the T3H.

Remove the mount paper before wiring.
Peel off the label from the mount paper and stick it near the power terminals where it can be readily seen.

Contact Toshiba if the label is damaged.


## About This Manual

## About This Manual

The T3H is a high speed and large capacity version of the T3. All the hardware components used for the T3 system, i.e. rack, power supply module, I/O modules, etc., are used with the T3H CPU. Regarding software function, the T3H has all the T3's functions and has some expanded functions.

This manual explains the expanded functions of the T3H and functional differences between the T3H and the T3. Therefore, for your better understanding of the T3H, read the following T3 manuals at first to understand the T3 system, then read this manual.

## T3 manuals:

| T3 User's Manual - Hardware | UM-TS03 $* * *$-E002 |
| :--- | :--- |
| T3 User's Manual - Function | UM-TS03 |
| T-series Instruction Set | UM-TS003 |
| T-series Computer Link Operation Manual | UM-TS03 |
| T3 Analog Input Module (AD368) | UM-TS003 |
| T3 Analog Output Module (DA364/DA374) | UM-TS03 |
| T3 |  |
| T3 Pulse Input Module (PI312) | UM-TS03 |
| T3 ASCII Module (AS311) | UM-TS03 |

## Terminology

The following is a list of abbreviations and acronyms used in this manual.

| $\mu \mathbf{s}$ | microsecond |
| :--- | :--- |
| ASCII | American Standard Code For Information Interchange |
| AWG | American Wire Gage |
| BCC | Block Check Code |
| CPU | Central Processing Unit |
| EEPROM | Electrically Erasable Programmable Read Only Memory |
| H | hexadecimal (when it appears in front of an alphanumeric string) |
| I/O | Input/Output |
| LED | Light Emitting Diode |
| LSB | Least Significant Bit |
| ms | millisecond |
| MSB | Most Significant Bit |
| RAM | Random Access Memory |
| ROM | Read Only Memory |
| SFC | Sequential Function Chart |
| Vac | AC voltage |
| Vdc | DC voltage |

## Contents

## Contents

Safety Precautions ..... 1
About This Manual ..... 6

1. T3H Overview ..... 9
1.1 Introducing the T3H ..... 10
1.2 Differences between T3H and T3 ..... 11
1.3 T3H components ..... 12
1.4 Specifications ..... 20
2. Expanded Functions ..... 27
2.1 System operation ..... 28
2.1.1 Auto-RUN / Standby selection ..... 28
2.1.2 Timer interrupt interval ..... 28
2.1.3 Saving the sampling trace condition ..... 29
2.2 Expanded registers ..... 30
2.2.1 External I/O register ..... 30
2.2.2 Auxiliary register ..... 30
2.2.3 Timer ..... 31
2.2.4 Link register ..... 31
2.2.5 File register ..... 34
2.2.6 Special register ..... 34
2.3 Network support function ..... 38
2.3.1 IC memory card data access through computer link ..... 38
2.3.2 TOSLINE-S20LP (loop) support ..... 41
2.3.3 Ethernet support ..... 42
2.4 Instructions ..... 43
2.4.1 Double-word multiplication and division ( $\mathrm{D} * /$ ) ..... 44
2.4.2 Essential PID (PID3) ..... 46
2.4.3 Floating point essential PID (FPID3) ..... 51
2.4.4 Expanded data transfer (XFER) ..... 56
2.4.5 Network data send (SEND) ..... 62
2.4.6 Network data receive (RECV) ..... 66

## Section 1

## T3H Overview

1.1 Introducing the T3H, 10
1.2 Differences between T3H and T3, 11
1.3 T3H components, 12
1.4 Specifications, 20

## 1. T3H Overview

### 1.1 Introducing the T3H

The T3H is a high performance large scale programmable controller.
Program memory capacity:
The T3H is available in two CPU types, PU325H and PU326H. Each type has the following user program memory capacity.

PU325H: 32 k steps
PU326H: 64 k steps

## I/O points:

The T3H can handle up to 76 I/O modules in its local configuration. And the T3H has 512 words of external I/O register (data memory).
If all the I/O modules are discrete I/Os, the T3H can control up to 4864 points.
( 64 points $\times 76=4864$ points)
If all the I/O modules are analog I/Os, the T3H can control up to 512 channels of analog signals.

## High speed processing:

A standard 16-bit micro processor and a special designed language processor are used in the T3H CPU. This dual-processor architecture provides high speed processing.
$0.09 \mu \mathrm{~s} /$ contact
$0.18 \mu \mathrm{~s} / \mathrm{coil}$
$0.54 \mu \mathrm{~s} / 16$-bit transfer
$0.90 \mu \mathrm{~s} / 16$-bit addition

## Multitasking:

The T3H supports the multitask processing. By using this function, suitable control interval for a target application can be obtained.
$1 \times$ internal timer interrupt (interval setting: 1 to $1000 \mathrm{~ms}, 1 \mathrm{~ms}$ units)
$8 \times \mathrm{I} / \mathrm{O}$ interrupts (activated by external events)
$1 \times$ main program (core of the user program)
$4 \times$ sub-programs (activated from other tasks and executed as back-ground job)

## Multiple programming languages:

The T3H supports two types of programming languages, i.e. ladder diagram and SFC (Sequential Function Chart). The ladder diagram is suited for logic control, and the SFC is suited for sequential control. These languages can be used in mixture.

## High performance software:

The T3H supports 24 basic ladder instructions and 204 function instructions. Floating points data processing is also available. The T3H can be applied to complex control applications.

## Network support:

The T3H can be connected to work-stations/personal-computers through Ethernet. Peer-to-peer communications between two T3H's via Ethernet is also available. For high-speed control-data linkage, TOSLINE-S20/F10 can be used.

## 1. T3H Overview

### 1.2 Differences between T3H and T3

The table below summarizes the differences between the T3H and T3. All other functions supported by the T3 can also be supported by the T3H as same.

| Item |  | T3H | T3 |
| :---: | :---: | :---: | :---: |
| Program memory capacity |  | $\begin{aligned} & 32 \mathrm{k} \text { steps (PU325H) } \\ & 64 \mathrm{k} \text { steps (PU326H) } \end{aligned}$ | 32 k steps (PU315 and PU325) |
| Built-in EEPROM |  | $\begin{aligned} & \text { Yes } \\ & \text { (PU325H and PU326H) } \end{aligned}$ | $\begin{aligned} & \hline \text { No (PU315) } \\ & \text { Yes (PU325) } \\ & \hline \end{aligned}$ |
| Programming instructions |  | All T3's instructions plus <br> FUN042 D*/ <br> FUN156 PID3 <br> FUN232 FPID3 <br> FUN239 SEND <br> FUN240 RECV | - |
| Execution speed ( $\mu \mathrm{s}$ ) |  | $\begin{aligned} & 0.09 \text { / contact } \\ & 0.18 \text { / coil } \\ & 0.9 \text { / addition } \end{aligned}$ | $\begin{array}{\|l} \hline 0.15 / \text { contact } \\ 0.3 / \text { coil } \\ 1.5 / \text { addition } \\ \hline \end{array}$ |
| Max. number of I/O modules supported in local |  | 76 modules (when IF321 is used) | 43 modules |
| System operation | Timer interrupt interval setting | 1 to $1000 \mathrm{~ms}, 1 \mathrm{~ms}$ units | 2 to $1000 \mathrm{~ms}, 1 \mathrm{~ms}$ units |
|  | Auto-RUN / standby selection | Software setting (system information) | Hardware switch (RAM/ROM switch) |
| User data | $\begin{aligned} & \text { External I/O } \\ & \text { (X/XW, Y/YW) } \end{aligned}$ | 8192 points / 512 words | 4096 points / 256 words |
|  | $\begin{aligned} & \begin{array}{l} \text { Auxiliary register } \\ \text { (R/RW) } \end{array} \\ & \hline \end{aligned}$ | $\begin{array}{\|l} 16000 \text { points / } \\ 1000 \text { words } \\ \hline \end{array}$ | 8192 points / 512 words |
|  | $\begin{aligned} & \begin{array}{l} \text { Special register } \\ \text { (S/SW) } \end{array} \\ & \hline \end{aligned}$ | 4096 points / 256 words | Same as left |
|  | Timer (T./T) | 1000 points (proportion of 0.1 s and 0.01 s timer is user definable) | 512 points (T000 - T063: 0.1 s ) (T064-T511: 0.01 s ) |
|  | Counter (C./C) | 512 points | Same as left |
|  | Data register (D) | 8192 words | Same as left |
|  | Link register (Z/W) (for TOSLINE-S20) | $\begin{array}{\|l\|} \hline 16000 \text { points / } \\ 2048 \text { words } \\ \text { (bit access available for } \\ \text { leading } 1000 \text { words) } \\ \hline \end{array}$ | 8192 points / 1024 words (bit access available for leading 512 words) |
|  | Link register (L/LW) (for TOSLINE-F10) | 4096 points / 256 words | Same as left |
|  | File register ( F ) | 32768 words | 8192 words |
|  | Index register $(\mathrm{I}, \mathrm{J}, \mathrm{K})$ | 3 words | Same as left |
| Programming tool |  | T-PDS | T-PDS and HP911 |
| Networking |  | Ethernet, <br> TOSLINE-S20, <br> TOSLINE-F10, <br> RS-485 computer link | TOSLINE-S20, TOSLINE-F10, RS-485 computer link |

## 1. T3H Overview

### 1.3 T3H components

## (1) CPU module

Two types of T3H CPU modules are available.

| Type | Description |
| :--- | :--- |
| PU325H | EEPROM + RAM (battery backed), User program 32 k steps, <br> Ladder diagram and SFC |
| PU326H | EEPROM + RAM (battery backed), User program 64 k steps, <br> Ladder diagram and SFC |



The external feature of the T3H CPU is the same as the T3 CPU except for the product identification.

## 1. T3H Overview

## Status LEDs:

| RUN <br> (green) | Lit | User program is being executed (RUN mode) |
| :---: | :--- | :--- |
|  | Blink | User program execution is stopped (HOLD mode) |
|  | Not lit | User program execution is stopped (HALT or ERROR mode) |
| FAULT <br> (red) | Lit | CPU or program error |
|  | Blink | Hardware initialization error |
|  | Not lit | Normal |
| I/O <br> (red) $)$ | Lit | I/O error |
|  | Blink | Hardware initialization error |
|  | Not lit | Normal |
| BATT <br> (green) | Lit | Battery voltage is normal |
|  | Not lit | Battery voltage is low (battery replacement is required) |

## RAM/ROM switch:

| RAM | User program stored in RAM is used. <br> (Program transfer from EEPROM to RAM is not executed) |
| :---: | :--- |
| ROM | At the beginning of RUN mode, user program stored in EEPROM is transferred to <br> RAM. (It is called Initial load) <br> If an IC memory card which contains user program has been installed, the IC <br> memory card becomes transfer source. <br> (If mode control switch is in P-RUN, the initial load is not executed) |

Note) In case of T3, the RAM/ROM switch has the function of auto-RUN/standby selection in addition to the initial load selection.
However, in case of T3H, the RAM/ROM switch only has the function of initial load selection as mentioned above.

## Mode control switch:

| HALT | User program execution is stopped. (HALT mode) <br> Normally, programming is performed in the HALT mode. <br> T3H operation mode control by programmer is not allowed. |
| :---: | :--- |
| RUN | T3H executes user program cyclically. (RUN mode) <br> It is the normal switch position under operation. |
| Even in the RUN mode, program changes are possible. However, saving into the <br> EEPROM is available only in the HALT mode. <br> T3H operation mode control by programmer is possible. |  |
| P-RUN | T3H executes user program cyclically. (RUN mode) <br> User program and the leading 4 k words of D register (D0000 to D4095) are write- <br> protected. <br> T3H operation mode control by programmer is possible. |

Note) In case of T3, even in P-RUN, data writing into D0000 to D4095 by instruction is allowed except for some instructions.
However, in case of T3H, data writing into D0000 to D4095 by instruction is inhibited if in P-RUN.

## 1. T3H Overview

## Battery cover:

A battery has been installed inside this cover at the factory shipment. The battery keeps the RAM contents (user program and user data), and supports the clockcalendar operation during power off.
The same battery as the T3's is used.

## Programmer port:

The programmer (T-PDS) is connected to the T3H through this port.
The same connection cable as the T3's is used.

## Computer link port:

The T3H CPU module has the computer link function as standard. This port is used to connect between T3H and a computer.
The T-series computer link protocol is supported by T3H.

## IC memory card slot:

Optional IC memory card (type: ME914) can be used with the T3H.
By using the IC memory card, user program saving/loading or user data expansion is available.

NOTE
For details of the operation mode and functions, refer to the T3 User's Manual.

## 1. T3H Overview

## (2) Expansion interface module

The expansion interface modules for the T3, i.e. IF311, IF351, IF312, IF352 and IF353, are also used with the T3H. When the IF311 or IF312 is used with the T3H, up to three expansion units can be connected, as same as the T3.
On the other hand, the IF321 is a dedicated expansion interface module for the T3H. When the IF321 is used instead of the IF311, up to 6 expansion units can be connected. In the maximum configuration, the T3H can control up to 76 I/O modules.

| Type |  | Description | Remarks |
| :---: | :---: | :---: | :---: |
| IF321 | For basic unit (2 channels) | Standard expansion type. 2 m max. between units, 6 m max. in total cable length for each channel. | Only for T3H |
| IF311 | For basic unit (1 channel) |  | T3/T3H common |
| IF351 | For expansion unit |  |  |
| IF312 | For basic unit | Long-distance expansion type. 40 m max. in cable length. (one channel only) |  |
| IF352 | For middle expansion unit |  |  |
| IF353 | For end expansion unit |  |  |



## 1. T3H Overview

The figure below shows the T3H's maximum expansion configuration.


In this configuration, the T3H can handle up to 76 I/O modules. If 64 points I/O modules are mounted on all the I/O slots ( 76 slots), the T3H can control up to 4864 points of discrete I/O.

The unit configuration using other expansion interface modules are the same as that of T3. Refer to the T3 User's Manual.

## 1. T3H Overview

## (3) Power supply module

The power supply module for the T3 is also used with the T3H. The following two types are available depending on power voltage.

| Type | Rated voltage | Frequency |
| :--- | :--- | :---: |
| PS361 | $100-120 \mathrm{Vac} / 200-240 \mathrm{Vac}$ (selectable) | $50 / 60 \mathrm{~Hz}$ |
| PS332 | 24 Vdc | - |



For details, refer to the T3 User's Manual.
(4) Rack

The rack (base board) for the T3 is also used with the T3H. The following four types are available.

| Type | Number of slot | Use |
| :--- | :--- | :--- |
| BU31A | 1 for PS, 1 for IF, 1 for CPU, 10 for I/O's | For basic unit |
| BU315 | 1 for PS, 1 for IF, 1 for CPU, 5 for I/O's |  |
| BU35B | 1 for PS, 1 for IF, 11 for I/O's | For expansion <br> unit |
| BU356 | 1 for PS, 1 for IF, 6 for I/O's |  |



For details, refer to the T3 User's Manual.

## (5) Expansion cable

The following types of the expansion cables are available.

| Type | Cable length | Remarks |
| :---: | :---: | :---: |
| CS3R5 | 0.5 m | For standard expansion. With both-end connectors (50-pin) |
| CS301 | 1 m |  |
| CS302 | 2 m |  |
| CL3R5 | 0.5 m | For long-distance expansion. With both-end connectors (68-pin) |
| CL301 | 1 m |  |
| CL305 | 5 m |  |
| CL310 | 10 m |  |
| CL320 | 20 m |  |
| CL340 | 40 m |  |

For details, refer to the T3 User's Manual.

## 1. T3H Overview

## (6) I/O module

The following types of I/O modules are available.

| Type | Description |  |
| :---: | :---: | :---: |
| DI334 | DC input | 32 points input (8 points/common), 12 to 24 Vdc , $10 \mathrm{~mA} /$ point |
| DI334H |  | 32 points input ( 8 points/common), 12 to 24 Vdc , $10 \mathrm{~mA} /$ point, high-speed response |
| DI335 |  | 64 points input ( 8 points/common), $24 \mathrm{Vdc}, 5 \mathrm{~mA} /$ point (connector type) |
| DI335H |  | 64 points input ( 8 points/common), $24 \mathrm{Vdc}, 5 \mathrm{~mA} /$ point, high-speed response (connector type) |
| IN354 | AC input | 32 points input ( 8 points/common), 100 to 120 Vac , $10 \mathrm{~mA} /$ point |
| IN364 |  | 32 points input ( 8 points/common), 200 to 240 Vac, $10 \mathrm{~mA} /$ point |
| DO333 | DC output | 16 points output ( 8 points/common), 12 to 24 Vdc , $2 \mathrm{~A} /$ point, $5 \mathrm{~A} /$ common |
| DO334 |  | 32 points output ( 16 points/common), 12 to 24 Vdc , 0.5 A/point, $5 \mathrm{~A} /$ common |
| DO335 |  | 64 points output ( 8 points/common), 5 to 24 Vdc , <br> $0.1 \mathrm{~A} /$ point (connector type) |
| AC363 | AC output | 16 points output ( 8 points/common), 100 to 240 Vac, $2 \mathrm{~A} /$ point, $5 \mathrm{~A} /$ common |
| AC364 |  | 32 points output (16 points/common), 100 to 240 Vac , $0.5 \mathrm{~A} /$ point, $3.2 \mathrm{~A} /$ common, $5 \mathrm{~A} / \mathrm{module}$ |
| RO364 | Relay output | 32 points output ( 8 points/common), $240 \mathrm{Vac} / 24 \mathrm{Vdc}$, $2 \mathrm{~A} /$ point, $5 \mathrm{~A} /$ common |
| RO363S |  | 16 points output (isolated contact), $240 \mathrm{Vac} / 24 \mathrm{Vdc}$, 2 A/point |
| AD368 | $\begin{aligned} & \hline \text { Analog } \\ & \mathrm{I} / \mathrm{O} \end{aligned}$ | 8 channels analog input, $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0-5 \mathrm{~V}, 0-10 \mathrm{~V}$, $1-5 \mathrm{~V}, \pm 20 \mathrm{~mA}, 0-20 \mathrm{~mA}$, or $4-20 \mathrm{~mA}, 12$-bit resolution |
| DA364 |  | 4 channels analog output, $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0-5 \mathrm{~V}, 0-10 \mathrm{~V}$, or 1-5 V, 12-bit resolution |
| DA374 |  | 4 channels analog output, 0-20 mA or 4-20 mA, 12-bit resolution |
| PI312 | Special <br> I/O | 2 channel pulse input, $5 / 12 \mathrm{~V}, 50 \mathrm{kHz}$ (max.), 24-bit counter, interrupt function |
| AS311 |  | Communication interface, 2 port of RS-232C/RS-422, <br> full-duplex, ASCII code, no protocol, 300 / 600 / 1200 / 2400 / <br> 4800 / 9600 / 19200 bps |
| CD332 |  | Change detect DC input, 8 points input, 12 to 24 Vdc , $10 \mathrm{~mA} /$ point, interrupt function |

## (7) Data transmission module

The following types of data transmission modules are available.

| Type | Description |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| EN311 | Ethernet | 10BASE5 or 10BASE2, 10 Mbps , computer link, T3H to T3H, and socket service |  | Only for T3H |
| SN321 | TOSLINE-S20 | High-speed control data link, 2 Mbps | Co-axial | $\begin{aligned} & \hline \text { T3/T3H } \\ & \text { common } \end{aligned}$ |
| SN322 |  |  | Optical |  |
| SN323 |  |  | Co-axial/optical |  |
| SN325 | TOSLINE-S20LP | High-speed control data link, 2 Mbps, 4 k words scan memory, optical loop |  | Only for T3H |
| MS311 | TOSLINE-F10 | $\begin{aligned} & \text { Field network, } \\ & 750 \mathrm{k} \text { bps } \end{aligned}$ | Master station | $\begin{aligned} & \hline \text { T3/T3H } \\ & \text { common } \end{aligned}$ |
| RS311 |  |  | Remote station |  |

(1) Maximum number of modules available on one T3H is as follows.

Ethernet: 4
TOSLINE-S20 and S20LP total: 2
TOSLINE-F10: 8
(2) Ethernet module and TOSLINE-S20LP are under development.

## (8) Module internal current consumption

The table below shows the internal 5 Vdc current consumption (max. value) of each T3H module. Use this data to check the power capacity.

| Type |  | Internal 5 Vdc <br> consumption |
| :--- | :--- | :---: |
| CPU | PU325H | 1.5 A |
|  | PU326H | 1.5 A |
| Expansion I/F | IF321 | 40 mA |
|  | IF311 | 20 mA |
|  | IF351 | 20 mA |
|  | IF312 | 800 mA |
|  | IF352 | 700 mA |
|  | IF353 | 700 mA |
| DC input | DI334 | 100 mA |
|  | DI334H | 100 mA |
|  | DI335 | 170 mA |
|  | AC input | IN335H |
|  | IN354 | 170 mA |
|  | IN364 | 120 mA |
| DC output | DO333 | 320 mA |
|  | DO334 | 210 mA |
|  | DO335 | 400 mA |


| Type |  | Internal 5 Vdc <br> consumption |
| :--- | :--- | :---: |
| AC output | AC363 | 530 mA |
|  | AC364 | 800 mA |
| Relay output | RO364 | 170 mA |
|  | RO363S | 100 mA |
| Analog input | AD368 | 450 mA |
| Analog output | DA364 | 180 mA |
|  | DA374 | 180 mA |
| Pulse input | PI312 | 800 mA |
| ASCII | AS311 | 1.0 A |
| Change detect | CD332 | 300 mA |
| Ethernet | EN311 | 700 mA |
| TOSLINE-S20 | SN321 | 800 mA |
|  | SN322 | 800 mA |
|  | SN323 | 800 mA |
| TOSLINE-S20LP | SN325 | 800 mA |
| TOSLINE-F10 | MS311 | 600 mA |
|  | RS311 | 600 mA |

## 1. T3H Overview

### 1.4 Specifications

Functional specifications

| Type |  | PU325H | PU326H |
| :---: | :---: | :---: | :---: |
| Control method |  | Stored program, cyclic scan system |  |
| Scan system |  | Floating scan or constant scan ( $10-200 \mathrm{~ms}, 10 \mathrm{~ms}$ units) |  |
| I/O update |  | Batch I/O refresh (direct I/O instruction available) |  |
| Program memory |  | Main memory: RAM (battery backed) Auxiliary memory: EEPROM (built-in), IC card (option) |  |
| Program capacity |  | 32 k steps | 64 k steps |
| Programming language |  | Ladder diagram with function block, SFC (sequential function chart) |  |
| Instructions | Ladder | Basic instructions: 24 types, Function instructions: 206 types |  |
|  | SFC | Step, transition, sequence selection, simultaneous sequences, jump, etc. |  |
| Execution speed |  | $0.09 \mu \mathrm{~s} /$ contact, $0.18 \mu \mathrm{~s} /$ coil, $0.54 \mu \mathrm{~s} /$ transfer, $0.90 \mu \mathrm{~s} /$ addition |  |
| Multitasking |  | 1 Main program <br> 4 Sub-program <br> 1 Timer interrupt ( $1-1000 \mathrm{~ms}, 1 \mathrm{~ms}$ units) $8 \mathrm{I} / \mathrm{O}$ interrupt (task switch $500 \mu \mathrm{~s}$ or less) 256 Subroutine |  |
| I/O capacity |  | 2432 points (using 32 points I/O modules) 4864 points (using 64 points I/O modules) Local I/O space: 8192 points / 512 words (X/XW and Y/YW: batch I/O) (I/WW and O/OW: direct I/O) |  |
| User data | Auxiliary relay | 16000 points / 1000 words (R/RW) |  |
|  | Special relay | 4096 points / 256 words (S/SW) |  |
|  | Timer | 1000 points (T./T) <br> (proportion of 0.01 s and 0.1 s timer is user definable) |  |
|  | Counter | 512 points (C./C) |  |
|  | Data register | 8192 words (D) <br> (leading 4096 words are stored in EEPROM) |  |
|  | Link register | 16000 points / 2048 words (ZW) (for TOSLINE-S20) |  |
|  | Link relay | 4096 points / 256 words (L/LW) (for TOSLINE-F10) |  |
|  | File register | 32768 words (F) |  |
|  | Index register | 3 words (I, J, K) |  |
|  | Retentive memory | F register and user defined ranges of RW, T, C, D |  |
| RAS | Self-diagnosis | Power interruption, main/expansion power failure, CPU/RAM/ROM check, I/O response, I/O bus check, I/O registration, I/O parity, battery level, watch dog timer, program check, others |  |
|  | Monitoring | Event history record, scan time measurement, others |  |
|  | Debugging | On-line trace monitor, force, sampling trace, status latch, single step/ N scan execution, break point, others |  |
| RAM data back-up |  | Lithium battery (type: TBT911*AS) <br> Recommended replacement: every 2 years |  |

## Instruction execution speed

| $\begin{aligned} & \text { FUN } \\ & \text { No. } \\ & \hline \end{aligned}$ | Name | Symbol | $\begin{array}{\|c\|} \hline \begin{array}{l} \text { Execution } \\ \text { time }(\mu \mathrm{s}) \end{array} \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: |
|  | NO contact | - | 0.09 |
|  | NC contact | - $1-$ | 0.09 |
|  | Transitional contact (rising) | -1ヶ | 0.36 |
|  | Transitional contact (falling) | - +1 | 0.36 |
|  | Coil | -()$+$ | 0.18 |
|  | Forced coil | $x-()-1$ | 0.09 |
|  | Inverter | -11- | 0.09 |
|  | Invert coil | $-(1)-1$ | 0.18 |
|  | Positive pulse contact | ${ }_{-P \mid}+$ | 0.36 |
|  | Negative pulse contact | - NF | 0.36 |
|  | Positive pulse coil | -(P)- | 0.36 |
|  | Negative pulse coil | -( N )- | 0.36 |
|  | Jump control set | JCS | 0.09 |
|  | Jump control reset | JCR | 0.09 |
|  | End | END | - |
|  | ON-delay timer | TON | 0.18 |
|  | OFF-delay timer | TOF | 0.18 |
|  | Single-shot timer | SS | 0.18 |
|  | Counter | CNT | 0.18 |
|  | Master control set | MCS | 0.09 |
|  | Master control reset | MCR | 0.09 |
| 18 | Data transfer | MOV | 0.54 |
| 19 | Double-word data transfer | DMOV | 4.14 |
| 20 | Invert transfer | NOT | 3.6 |
| 21 | Double-word invert transfer | DNOT | 4.32 |
| 22 | Data exchange | XCHG | 6.12 |
| 23 | Double-word data exchange | DXCH | 7.56 |
| 24 | Table initialization | TINZ | $\begin{gathered} 15.5 \\ +0.37 n \\ \hline \end{gathered}$ |
| 25 | Table transfer | TMOV | $\begin{array}{r} 24.32 \\ +0.49 \mathrm{n} \\ \hline \end{array}$ |
| 26 | Table invert transfer | TNOT | $\begin{array}{r} 24.44 \\ +0.58 \mathrm{n} \\ \hline \end{array}$ |
| 27 | Addition | + | 0.9 |
| 28 | Subtraction | - | 0.9 |
| 29 | Multiplication | * | 2.61 |
| 30 | Division | 1 | 4.59 |


| FUN <br> No. | Name | Symbol | Execution <br> time $(\mu \mathrm{s})$ |
| :---: | :--- | :---: | :---: |
| 31 | Double-word <br> addition | D+ | 6.1 |
| 32 | Double-word <br> Subtraction | D- | 6.1 |
| 33 | Double-word <br> Multiplication | D* | 6.22 |
| 34 | Double-word <br> division | D/ | 9.85 |
| 35 | Addition with carry | +C | 6.29 |
| 36 | Subtraction with <br> carry | -C | 6.29 |
| 37 | Double-word <br> addition with carry | D+C | 7.21 |
| 38 | Double-word <br> subtraction with <br> carry | D-C | 7.21 |
| 39 | Unsigned <br> multiplication | U* | 7.37 |
| 40 | Unsigned division | U/ | 7.77 |
| 41 | Unsigned double/ <br> single division | DIV | 8.67 |
| 42 | Double-word <br> multiplication and <br> division | D*/ | 61.07 |
| 43 | lncrement | +1 | 3.23 |
| 44 | Double-word <br> increment | D+1 | 4.11 |
| 45 | Decrement | -1 | 3.23 |
| 46 | Double-word <br> decrement | D-1 | 4.11 |
| 48 | AND | AND | 4.84 |
| 49 | Double-word AND | DAND | 5.92 |
| 50 | OR | OR | 4.84 |
| 51 | Double-word OR | DOR | 5.92 |
| 52 | Exclusive OR | EOR | 4.84 |
| 53 | Double-word <br> Exclusive OR | DEOR | 5.92 |
| 54 | Not exclusive OR | ENR | 4.84 |
| 55 | Double-word <br> Not exclusive OR | DENR | 5.92 |
| 57 | Table AND | TAND | 23.31 |
| $+0.72 n$ |  |  |  |
| 58 | Table OR <br> $+0.32 n$ |  |  |

## 1. T3H Overview

## Instruction execution speed (continued)

| FUN <br> No. | Name | Symbol | Execution <br> time $(\mu \mathrm{s})$ |
| :---: | :--- | :--- | :---: |
| 59 | Table Exclusive OR | TEOR | 23.31 <br> +0.72 n |
| 60 | Table Not exclusive | TENR | 23.31 |
|  |  | +0.72 n |  |$|$


| $\begin{array}{\|c} \hline \text { FUN } \\ \text { No. } \\ \hline \end{array}$ | Name | Symbol | Execution time $(\mu \mathrm{s})$ |
| :---: | :---: | :---: | :---: |
| 83 | m bit file n bit rotate left | TRTL | (Word) 16.21 $+0.46 n$ $+0.45 m$ $-($ Bit $)$ 23.15 $+0.12 n$ $+0.06 m$ |
| 84 | 1 bit rotate right with carry | RRC1 | 4.69 |
| 85 | 1 bit rotate left with carry | RLC1 | 4.15 |
| 86 | n bit rotate right with carry | RRC | $\begin{array}{r} 4.59 \\ +0.81 \mathrm{n} \\ \hline \end{array}$ |
| 87 | n bit rotate left with carry | RLC | $\begin{array}{r} 5.44 \\ +0.72 \mathrm{n} \\ \hline \end{array}$ |
| 88 | m bit file $n$ bit rotate right with carry | TRRC | (Word) 16.24 $+0.43 n$ $+0.45 m$ $-($ Bit) 25.49 $+0.12 n$ $+0.05 m$ |
| 89 | m bit file n bit rotate left with carry | TRLC | (Word) <br> 16.21 <br> +0.46 n <br> +0.45 m <br> $(\overline{\mathrm{Bit}})$ <br> 28.55 <br> +0.07 n <br> +0.05 m |
| 90 | Multiplexer | MPX | 9.74 |
| 91 | Demultiplexer | DPX | 8.86 |
| 92 | Table bit transfer | TBM | 12.44 |
| 93 | Bit table transfer | BTM | 11.54 |
| 95 | Bit file compare | TCMP | 18.03 |
| 96 | Greater than | $>$ | 3.76 |
| 97 | Greater than or equal | >= | 3.76 |
| 98 | Equal | = | 3.76 |
| 99 | Not equal | <> | 3.76 |
| 100 | Less than | $<$ | 3.76 |
| 101 | Less than or equal | <= | 3.76 |
| 102 | Double-word greater than | D> | 4.84 |
| 103 | Double-word greater than or equal | D>= | 4.48 |

## Instruction execution speed (continued)

| $\begin{aligned} & \hline \text { FUN } \\ & \text { No. } \end{aligned}$ | Name | Symbol | Execution time ( $\mu \mathrm{s}$ ) |
| :---: | :---: | :---: | :---: |
| 104 | Double-word equal | D= | 4.48 |
| 105 | Double-word not equal | D<> | 4.48 |
| 106 | Double-word less than | D< | 4.84 |
| 107 | Double-word less than or equal | D<= | 4.48 |
| 108 | Unsigned greater than | U> | 3.76 |
| 109 | Unsigned greater than or equal | $U>=$ | 3.76 |
| 110 | Unsigned equal | $\mathrm{U}=$ | 3.76 |
| 111 | Unsigned not equal | U<> | 3.76 |
| 112 | Unsigned less than | U< | 3.76 |
| 113 | Unsigned less than or equal | $\mathrm{U}<=$ | 3.76 |
| 114 | Device/register set | SET | $\begin{gathered} \text { (Device) } \\ 3.6 \\ \hline \text { Register }) \\ 2.32 \end{gathered}$ |
| 115 | Device/register reset | RST | $\begin{gathered} \text { (Device) } \\ 3.6 \\ \hline \text { (Register) } \\ 2.52 \\ \hline \end{gathered}$ |
| 116 | Table bit set | TSET | 9.42 |
| 117 | Table bit reset | TRST | 9.62 |
| 118 | Set carry | SETC | 1.26 |
| 119 | Reset carry | RSTC | 1.26 |
| 120 | Encode | ENC | $\begin{array}{r} 19.55 \\ +2.91 \mathrm{n} \end{array}$ |
| 121 | Decode | DEC | $\begin{array}{r} 10.68 \\ +2.48 n \\ \hline \end{array}$ |
| 122 | Bit count | BC | 10.56 |
| 123 | Double-word bit count | DBC | 18.16 |
| 124 | Data search | SCH | $\begin{aligned} & 12.47 \\ & +0.9 n \end{aligned}$ |
| 125 | Push | PUSH | $\begin{gathered} 9.99 \\ +0.47 n \end{gathered}$ |
| 126 | Pop last | POPL | $\begin{array}{r} 10.9 \\ +0.46 \mathrm{n} \\ \hline \end{array}$ |
| 127 | Pop first | POPF | 11.46 |
| 128 | Subroutine call | CALL | 9.24 |
| 129 | Subroutine return | RET |  |
| 130 | Jump | JUMP | 3.24 |
| 132 | Loop FOR | FOR | 6.17 |
| 133 | Loop NEXT | NEXT | +2.71n |


| $\begin{array}{\|c\|} \hline \text { FUN } \\ \text { No. } \\ \hline \end{array}$ | Name | Symbol | Execution time ( $\mu \mathrm{s}$ ) |
| :---: | :---: | :---: | :---: |
| 134 | Master control set n | MCSn | 4.9 |
| 135 | Master control reset n | MCRn |  |
| 136 | Jump label | LBL | - |
| 137 | Subroutine entry | SUBR | 0.18 |
| 140 | Enable interrupt | El | 53.28 |
| 141 | Disable interrupt | DI | 52.88 |
| 142 | Interrupt return | IRET | - |
| 143 | Watch dog timer reset | WDT | 62.78 |
| 144 | Step sequence initialize | STIZ | $\begin{array}{r} 5.0 \\ +0.02 \mathrm{n} \\ \hline \end{array}$ |
| 145 | Step sequence input | STIN | 3.22 |
| 146 | Step sequence output | STOT | $\begin{array}{r} 5.67 \\ +2.44 n \end{array}$ |
| 147 | Flip-flop | F/F | 3.78 |
| 148 | Timer trigger | TRG | 2.89 |
| 149 | Up/down counter | U/D | 2.26 |
| 150 | Diagnostic display | DIAG | $\begin{array}{r} 10.98 \\ +0.02 \mathrm{n} \\ \hline \end{array}$ |
| 151 | Diagnostic reset | DIAR | $\begin{gathered} 6.41 \\ +1.31 \mathrm{n} \end{gathered}$ |
| 152 | Status latch set | STLS | $\begin{array}{r} 320.48 \\ +12.94 n \\ \hline \end{array}$ |
| 153 | Status latch reset | STLR | 47.18 |
| 154 | Set calendar | CLND | 201.98 |
| 155 | Calendar operation | CLDS | 382.48 |
| 156 | Essential PID | PID3 |  |
| 158 | Drum sequencer | DRUM | $\begin{gathered} 16.46 \\ +0.02 \mathrm{~m} \\ \hline \end{gathered}$ |
| 159 | Cam sequencer | CAM | $\begin{array}{r} 9.88 \\ +4.62 \mathrm{n} \\ \hline \end{array}$ |
| 160 | Upper limit | UL | 5.04 |
| 161 | Lower limit | LL | 5.04 |
| 162 | Maximum value | MAX | $\begin{gathered} 8.89 \\ +0.72 n \end{gathered}$ |
| 163 | Minimum value | MIN | $\begin{array}{r} 8.89 \\ +0.81 \mathrm{n} \\ \hline \end{array}$ |
| 164 | Average value | AVE | $\begin{array}{r} 9.79 \\ +1.03 n \\ \hline \end{array}$ |
| 165 | Function generator | FG | $\begin{array}{r} 10.09 \\ +1.14 n \end{array}$ |
| 166 | Dead band | DB | 6.12 |
| 167 | Square root | RT | 80.26 |
| 168 | Integral | INTG | 17.64 |
| 169 | Ramp function | RAMP | 12.24 |
| 170 | PID | PID | 17.78 |

## 1. T3H Overview

## Instruction execution speed (continued)

| FUN No. | Name | Symbol | Execution time ( $\mu \mathrm{s}$ ) |
| :---: | :---: | :---: | :---: |
| 171 | Deviation square PID | PID2 | 25.28 |
| 172 | Sine function | SIN | 14.94 |
| 173 | Cosine function | COS | 15.44 |
| 174 | Tangent function | TAN | 4.24 |
| 175 | Arc-sine function | ASIN | 4.64 |
| 176 | Arc-cosine function | ACOS | 5.04 |
| 177 | Arc-tangent function | ATAN | 192.28 |
| 178 | Exponential function | EXP | 169.28 |
| 179 | Logarithm | LOG | 217.28 |
| 180 | Absolute value | ABS | 3.76 |
| 181 | Double-word absolute value | DABS | 4.32 |
| 182 | 2's complement | NEG | 3.6 |
| 183 | Double-word 2's complement | DNEG | 4.68 |
| 184 | Double-word conversion | DW | 4.12 |
| 185 | 7-segment decode | 7SEG | 3.76 |
| 186 | ASCII conversion | ASC | $\begin{array}{r} 9.29 \\ +0.33 n \\ \hline \end{array}$ |
| 188 | Binary conversion | BIN | 13.86 |
| 189 | Double-word binary conversion | DBIN | 32.58 |
| 190 | BCD conversion | BCD | 13.86 |
| 191 | Double-word BCD conversion | DBCD | 13.52 |
| 192 | BCD addition | B+ | 25.26 |
| 193 | BCD subtraction | B- | 25.26 |
| 194 | BCD multiplication | B* | 39.66 |
| 195 | BCD division | B/ | 34.86 |
| 196 | Double-word BCD addition | DB+ | 48.86 |
| 197 | Double-word BCD subtraction | DB- | 46.86 |
| 198 | Double-word BCD multiplication | DB* | 106.88 |
| 199 | Double-word BCD division | DB/ | 86.12 |
| 200 | BCD addition with carry | B+C | 25.92 |
| 201 | BCD subtraction with carry | B-C | 26.12 |
| 202 | Double-word BCD addition with carry | DB+C | 47.32 |


| $\begin{array}{\|l} \hline \text { FUN } \\ \text { No. } \\ \hline \end{array}$ | Name | Symbol | Execution time ( $\mu \mathrm{s}$ ) |
| :---: | :---: | :---: | :---: |
| 203 | Double-word BCD subtraction with carry | DB-C | 48.12 |
| 204 | Floating point conversion | FLT | 5.03 |
| 205 | Fixed point conversion | FIX | 5.03 |
| 206 | Floating point absolute value | FABS | 4.5 |
| 207 | Floating point sign inversion | FNEG | 4.68 |
| 208 | Floating point addition | F+ | 14.44 |
| 209 | Floating point subtraction | F- | 14.82 |
| 210 | Floating point multiplication | F* | 12.08 |
| 211 | Floating point division | F/ | 12.06 |
| 212 | Floating point greater than | F> | 7.2 |
| 213 | Floating point greater than or equal | $\mathrm{F}>=$ | 7.2 |
| 214 | Floating point equal | $\mathrm{F}=$ | 6.31 |
| 215 | Floating point not equal | $\mathrm{F}<>$ | 6.31 |
| 216 | Floating point less than | F< | 7.22 |
| 217 | Floating point less than or equal | $\mathrm{F}<=$ | 7.18 |
| 218 | Floating point upper limit | FUL | 8.46 |
| 219 | Floating point lower limit | FLL | 8.5 |
| 220 | Floating point dead band | FDB | 20.68 |
| 221 | Floating point square root | FRT | 54.3 |
| 222 | Floating point PID | FPID | 201.98 |
| 223 | Floating point deviation square PID | FPID2 | 217.48 |
| 224 | Floating point sine | FSIN | 129.08 |
| 225 | Floating point cosine | FCOS | 148.48 |

## 1. T3H Overview

Instruction execution speed (cont'd)

| FUN <br> No. | Name | Symbol | Execution <br> time ( $\mu \mathrm{s})$ |
| :---: | :--- | :---: | :---: |
| 226 | Floating point <br> tangent | FTAN | 259.48 |
| 227 | Floating point arc- <br> sine | FASIN | 213.98 |
| 228 | Floating point arc- <br> cosine | FACOS | 221.98 |
| 229 | Floating point arc- <br> tangent | FATAN | 189.98 |
| 230 | Floating point <br> exponential | FEXP | 141.08 |
| 231 | Floating point <br> logarithm | FLOG | 206.98 |
| 232 | Floating point <br> essential PID | FPID3 | I/O |
| 235 | Direct I/O |  |  |
| 236 | Expanded data <br> transfer | XFER | ${ }^{* 2}$ |
| 237 | Special module data <br> read | READ | ${ }^{* 3}$ |
| 238 | Special module data <br> write | WRITE | ${ }^{* 4}$ |
| 239 | Network data send | SEND | Reta <br> 240 <br> Network data <br> receive |
| 241 | SFC initialize | SFIZ | 6.95 |


| FUN <br> No. | Name | Execution <br> time $(\mu \mathrm{s})$ |
| :--- | :--- | :---: |
|  | SFC initialize | 197.48 |
|  | SFC initial step | 1.15 |
|  | SFC step | 1.26 |
|  | SFC end step | 3.96 |
|  | SFC macro step | 4.81 |
|  | SFC wait step | 2.32 |
|  | SFC alarm step | 2.61 |
|  | SFC transition | 3.21 |
|  | SFC end |  |$\quad 2.619$.

*1 I/O:
6.8+3.05n (Basic unit)
$6.45+7.93 n \quad$ (Expansion unit)
*2 XFER
$286.48+4.5 n$
$302.46+9.02 n$
(register $\rightarrow$ S20 on basic unit)
(register $\rightarrow$ S20 on expansion unit)
394.69+7.49n (S20 on basic unit $\rightarrow$ register)
$417.97+9.51 \mathrm{n} \quad$ (S20 on expansion unit $\rightarrow$ register)
$252.44+1.54 n \quad$ (register $\rightarrow$ EEPROM)
185.88+1.58n (EEPROM $\rightarrow$ register)
$186.75+1.53 n \quad$ (register $\rightarrow$ IC card)
185.3+1.58n $\quad$ (IC card $\rightarrow$ register)
179.99+1.09n $\quad$ (register $\rightarrow$ register)
*3
READ:
$261.01+9.97 n \quad$ (Basic unit)
$280.62+12.86 n \quad$ (Expansion unit)
*4 WRITE: 252.04+9.93n (Basic unit)
278.57+12.91n (Expansion unit)

## 1. T3H Overview



When index modification, digit designation or direct I/O register (IW/OW) is used for an operand, the additional time is required per one operand as shown below.

| Additional time by <br> operand modification $(\mu \mathrm{s})$ |  | Operand format |  |  |
| :--- | :--- | :---: | :---: | :---: |
|  | Single | Double | Table |  |
| Index modification | 5.4 | 6.7 | 6.7 |  |
| Digit designation | 6.0 | 10.0 | $11+3.0(\mathrm{n}+1)$ |  |
| Direct I/O | Basic unit | 4.3 | 7.2 | $3+3.5 \mathrm{n}$ |
|  | Expansion unit | 8.8 | 16.2 | $3+8.0 \mathrm{n}$ |
|  |  |  |  |  |
| digit designation | Basic unit | 14.6 | 22.3 | $14+6.26(\mathrm{n}+1)$ |
|  | Expansion unit | 23.6 | 35.8 | $14+10.76(\mathrm{n}+1)$ |

## Section 2

## Expanded Functions

2.1 System operation, 28
2.2 Expanded registers, 30
2.3 Network support function, 38
2.4 Instructions, 43

## 2. Expanded Functions

### 2.1 System operation

### 2.1.1 Auto-RUN / Standby selection

The initial operation mode (HALT or RUN) just after power on is determined by the user-setting status of the Auto-RUN / Standby selection.

When the setting status is;
Auto-RUN: The T3H's initial operation mode is determined by the mode control switch (HALT / RUN / P-RUN). When this switch is in RUN or P-RUN, the T3H moves into RUN mode automatically.

Standby: The T3H stays in HALT mode regardless of the mode control switch (HALT / RUN / P-RUN) after power on. Then the operation mode can be changed manually, i.e. by programmer command or by changing the mode control switch.

The Auto-RUN / Standby selection is included in the system information memory, and the selection is made by using the programmer.

(1) The default setting is Standby.
(2) Different from the T3H, in case of the T3, this selection is made by the hardware switch (RAM/ROM switch).

### 2.1.2 Timer interrupt interval

In the T3H, the timer interrupt program is available with the interval setting of 1 to 1000 ms in 1 ms increments.
(In case of the T3, it is 2 to 1000 ms in 1 ms increments)


If you use the timer interrupt with 1 ms interval, consider to minimize the execution time of the timer interrupt program. If the interrupt task requires long time, the T3H cannot assign enough time for main program execution. As the result, scan time over error will occur.

In case of the T3H, SFC (Sequential Function Chart) can also be programmed on the interrupt program, as well as Ladder diagram.

### 2.1.3 Saving the sampling trace condition

The sampling trace function is available on the T3H as well as the T3. In addition to all the sampling trace functions on the T3, the T3H can save the sampling trace condition into the IC memory card. By using this function, the sampling trace data which is collected and saved in the IC memory card on one T3H can be displayed using other T3H via the IC memory card.

This function is used as follows.
T3H which performs sampling (data collection):

- Install the IC memory card in the T3H CPU module.
- Set MMR for the PU slot in the I/O allocation in order to use an IC memory card for sampling data storage.
- Set the special device S0620 to ON.
- Edit the sampling trace condition. The edited condition is also saved into the IC memory card.
- Execute the sampling trace. The sampling data is saved into the IC memory card.
- Remove the IC memory card.

T3H which is used to display the sampling data stored in the IC memory card:

- Install the IC memory card in which the sampling trace data is stored.
- Set MMR for the PU slot in the I/O allocation in order to use an IC memory card for sampling trace function.
- Monitor the sampling trace condition. The condition stored in the IC memory card is displayed.
- Display the sampling trace data. The sampling data stored in the IC memory card is displayed.

To copy the sampling data stored in the T3H's file register to an IC memory card, set the special device S0620 to ON and display the sampling trace condition. By this operation, the sampling trace condition and the sampling data stored in file register are copied into the IC memory card.

## 2. Expanded Functions

### 2.2 Expanded registers

The T3H has the same types of registers as the T3. However, the address ranges of some registers are expanded in the T3H.
This section explains the expanded registers and the notes.


For details of functions of each register/device, refer to the T3 User's Manual.

### 2.2.1 External I/O register

The T3H can handle up to 76 I/O modules. Accordingly, the T3H has 512 words of external I/O register.

| Function type | Type code | Address range | Quantity | Expression example |
| :---: | :---: | :---: | :---: | :---: |
| Input register | XW | 000-511 | Total 512 words | XW280 |
| Output register | YW |  |  | YW412 |
| Direct input register | IW |  |  | IW280 |
| Direct output register | OW |  |  | OW412 |
| Input device | X | 0000-511F | Total 8192 points | X280A |
| Output device | Y |  |  | Y4128 |
| Direct input device | 1 |  |  | 12809 |
| Direct output device | 0 |  |  | O412C |

Regarding the I/O allocation, the channel 1 of the IF321 is assigned to Unit 1 to 3, and the channel 2 of the IF321 is assigned to Unit 4 to 6 . The XW/YW registers are assigned in the sequence of Unit $0 \rightarrow 1 \rightarrow \ldots \rightarrow 6$.

### 2.2.2 Auxiliary register

The T3H has 1000 words of auxiliary register.

| Function type | Type <br> code | Address range | Quantity | Expression <br> example |
| :--- | :---: | :---: | :---: | :---: |
| Auxiliary register | RW | $000-999$ | 1000 words | RW725 |
| Auxiliary device | R | $000-999 F$ | 16000 points | R725B |

### 2.2.3 Timer

The T3H has 1000 points of timer.

| Function type | Type <br> code | Address range | Quantity | Expression <br> example |
| :--- | :---: | :---: | :---: | :---: |
| Timer register | T | $000-999$ | 1000 words | T670 |
| Timer device | T. | $000-999$ | 1000 points | T.670 |

The proportion of the 0.01 s base and the 0.1 s base timers within this 1000 points can be specified by user. This setting information is stored in the system information.

10 ms Timer Range Setting:
T000 - T [ $\quad \longleftarrow \quad$ User setting (max. 999)


T3H internally, the register ranges T000 to T511 and T512 to T999 are handled separately. Therefore, index modification or table designation across these ranges are not allowed.

For example)

| $-[$ T450 TMOV (100) D1000 $]-$ | Not allowed |
| :--- | :--- | :--- |
|  |  |
| $[$ T450 TMOV (62) D1000 ]- | Allowed |
| $-[$ T512 TMOV (38) D1062 ]- |  |

### 2.2.4 Link register

The T3H has 2048 words of link register. This link register is prepared for the TOSLINE-S20 (here called S20).

| Function type | Type <br> code | Address range | Quantity | Expression <br> example |
| :--- | :---: | :---: | :---: | :---: |
| Link register | W | $0000-2047$ | 2048 words | W1500 |
| Link device | Z | $0000-999 \mathrm{~F}$ | 16000 points | Z847E |

The link device $Z$ corresponds to a bit in a link register $W$. The bit access as $Z$ device is available for the leading 1000 words of W register.

## 2. Expanded Functions

Regarding the network assignment, the W register is divided into 32 blocks. (64 words per one block)

The S20 has 1024 words of scan memory. In case of the T3H, even if two S20's are used, the scan memory of each S20 can be fully mapped to the W register. Channel 1 S20 is allocated to the blocks 1 to 16, and channel 2 S20 is allocated to the blocks 17 to 32.

The allocation example below shows the case of all the blocks are set as "LINK".

| T3H's link register W | Block | Setting |  | CH1 S20scan memory | CH2 S20scan memory |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CH1 | CH2 |  |  |
| W0000-W0063 | 1 | LINK |  | 0000-0063 |  |
| W0064 - W0127 | 2 | LINK |  | 0064-0127 |  |
| W0128-W0191 | 3 | LINK |  | 0128-0191 |  |
| W0192-W0255 | 4 | LINK |  | 0192-0255 |  |
| W0256-W0319 | 5 | LINK |  | 0256-0319 |  |
| W0320-W0383 | 6 | LINK |  | 0320-0383 |  |
| W0384-W0447 | 7 | LINK |  | 0384-0447 |  |
| W0448-W0511 | 8 | LINK |  | 0448-0511 | - |
| W0512-W0575 | 9 | LINK |  | 0512-0575 |  |
| W0576-W0639 | 10 | LINK |  | 0576-0639 |  |
| W0640-W0703 | 11 | LINK |  | 0640-0703 |  |
| W0704 - W0767 | 12 | LINK |  | 0704-0767 |  |
| W0768-W0831 | 13 | LINK |  | 0768-0831 |  |
| W0832-W0895 | 14 | LINK |  | 0832-0895 |  |
| W0896-W0959 | 15 | LINK |  | 0896-0959 |  |
| W0960-W1023 | 16 | LINK |  | 0960-1023 |  |
| W1024-W1087 | 17 |  | LINK |  | 0000-0063 |
| W1088-W1151 | 18 |  | LINK |  | 0064-0127 |
| W1152-W1215 | 19 |  | LINK |  | 0128-0191 |
| W1216-W1279 | 20 |  | LINK |  | 0192-0255 |
| W1280-W1343 | 21 |  | LINK |  | 0256-0319 |
| W1344-W1407 | 22 |  | LINK |  | 0320-0383 |
| W1408-W1471 | 23 |  | LINK |  | 0384-0447 |
| W1472-W1535 | 24 |  | LINK | - | 0448-0511 |
| W1536-W1599 | 25 |  | LINK |  | 0512-0575 |
| W1600-W1663 | 26 |  | LINK |  | 0576-0639 |
| W1664-W1727 | 27 |  | LINK |  | 0640-0703 |
| W1728-W1791 | 28 |  | LINK |  | 0704-0767 |
| W1792-W1855 | 29 |  | LINK |  | 0768-0831 |
| W1856-W1919 | 30 |  | LINK |  | 0832-0895 |
| W1920-W1983 | 31 |  | LINK |  | 0896-0959 |
| W1984-W2047 | 32 |  | LINK |  | 0960-1023 |

When "GLOBAL" setting is used, the link registers of "GLOBAL" setting block are assigned to both CH1 and CH2 S20's.

| T3H's link register W | Block | Setting |  | CH1 S20 scan memory | CH2 S20 scan memory |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CH 1 | CH 2 |  |  |
|  |  |  |  |  |  |
| W0192-W0255 | 4 | LINK |  | 0192-0255 | - |
| W0256-W0319 | 5 | GLOBAL |  | 0256-0319 | 0256-0319 |
| W0320-W0383 | 6 | GLOBAL |  | 0320-0383 | 0320-0383 |
| W0384 - W0447 | 7 | GLOBAL |  | 0384-0447 | 0384-0447 |
| W0448 - W0511 | 8 | GLOBAL |  | 0448-0511 | 0448-0511 |
| W0512 - W0575 | 9 | LINK |  | 0512-0575 | - |
|  |  |  |  |  |  |
| W1216-W1279 | 20 |  | LINK |  | 0192-0255 |
| W1280-W1343 | 21 |  |  |  |  |
| W1344-W1407 | 22 |  |  | - | - |
| W1408-W1471 | 23 |  |  |  |  |
| W1472-W1535 | 24 |  |  |  |  |
| W1536-W1599 | 25 |  | LINK |  | 0512-0575 |
| + |  |  |  |  |  |

- The blocks 1-16 are dedicated to the CH1 S20, and the blocks 17-32 are dedicated to the CH2 S20.
It is not allowed to assign the blocks 1-16 to CH 2 , and blocks 17-32 to CH 1 .
- For the blocks set as "LINK" or "GLOBAL", the T3H performs data read from S20 (for data receive area) and data write to S20 (for data send area).
The data transfer direction (read or write) is automatically decided by the T3H according to the S20's receive/send setting.
- For the blocks set as "GLOBAL", the data transfer is as follows.

1) If CH 1 is receive and CH 2 is send;

CH 1 receive data is read and written into both W register and CH 2 .
2) If CH 1 is send and CH 2 is receive;

CH 2 receive data is read and written into both W register and CH 1 .
3) If both CH 1 and CH 2 are send;

W register data is written into both CH 1 and CH 2 .
4) If both CH 1 and CH 2 are receive;

The receive data of "GLOBAL" setting channel is read and stored in W register.

In case of TOSLINE-S20LP, it has 4096 words of scan memory. The leading 2048 words can be assigned straight to W register. The following 2048 words can be accessed by using XFER instruction.

## 2. Expanded Functions

### 2.2.5 File register

The T3H has 32768 words of file register in the CPU module.

| Function type | Type <br> code | Address range | Quantity | Expression <br> example |
| :--- | :---: | :---: | :---: | :---: |
| File register | F | $0000-9999$ <br> $(10000-32767)$ | 32768 words | F9000 |

For the address range F0000 to F9999, normal direct addressing is available as follows.

```
-[ D1000 MOV F9999 ]-
```

However, for the addresses F10000 and after, direct addressing is not possible. To use this address range with an instruction, the index modification must be used.
-[ D1000 MOV F0000 ]- If I=30000, D1000 data is transferred to F30000.

### 2.2.6 Special register

The T3H has 256 words of special register as same as the T3. However, within the address range, some functions are added according to function expansion of the T3H.
The table below shows the added functions on the special register. They are not used with the T3.

| Special device | Name | Function |
| :---: | :---: | :---: |
| S0500 | I/O error map \#4-0 | ON when I/O error detected in unit 4 - slot 0 |
| S0501 | I/O error map \#4-1 | ON when I/O error detected in unit 4 - slot 1 |
| S0502 | I/O error map \#4-2 | ON when I/O error detected in unit 4 - slot 2 |
| S0503 | I/O error map \#4-3 | ON when I/O error detected in unit 4 - slot 3 |
| S0504 | I/O error map \#4-4 | ON when I/O error detected in unit 4 - slot 4 |
| S0505 | I/O error map \#4-5 | ON when I/O error detected in unit 4 - slot 5 |
| S0506 | 1/O error map \#4-6 | ON when I/O error detected in unit 4 - slot 6 |
| S0507 | I/O error map \#4-7 | ON when I/O error detected in unit 4 - slot 7 |
| S0508 | I/O error map \#4-8 | ON when I/O error detected in unit 4 - slot 8 |
| S0509 | I/O error map \#4-9 | ON when I/O error detected in unit 4 - slot 9 |
| S050A | I/O error map \#4-10 | ON when I/O error detected in unit 4 - slot 10 |
| S050B |  | Reserve (for future use) |
| S050C |  |  |
| S050D |  |  |
| S050E |  |  |
| S050F |  |  |

## 2. Expanded Functions



| Special <br> device | Name | Function |
| :---: | :--- | :--- |
| S0620 | Sampling trace copy | Used for saving sampling trace data (ON for active) |
| S0621 |  | Reserve (for future use) |
|  |  |  |
| S062F |  |  |


| Special <br> register | Name | Function |
| :--- | :--- | :--- |
| SW067 | Write protect for <br> SEND/RECV | Used for setting write protect against SEND and <br> RECV instructions |

## 2. Expanded Functions

| Special register | Name |  | Function |
| :---: | :---: | :---: | :---: |
| SW192 | TOSLINE-S20 scan healthy map | W1024-W1039 | - The corresponding bit is ON when the W register is updated normally. <br> - The lowest address of W register corresponds to bit 0 in the SW register, and in the order. |
| SW193 |  | W1040-W1055 |  |
| SW194 |  | W1056-W1071 |  |
| SW195 |  | W1072-W1087 |  |
| SW196 |  | W1088-W1103 |  |
| SW197 |  | W1104-W1119 |  |
| SW198 |  | W1120-W1135 |  |
| SW199 |  | W1136-W1151 |  |
| SW200 |  | W1152-W1167 |  |
| SW201 |  | W1168-W1183 |  |
| SW202 |  | W1184-W1199 |  |
| SW203 |  | W1200-W1215 |  |
| SW204 |  | W1216-W1231 |  |
| SW205 |  | W1232-W1247 |  |
| SW206 |  | W1248-W1263 |  |
| SW207 |  | W1264-W1279 |  |
| SW208 |  | W1280-W1295 |  |
| SW209 |  | W1296-W1311 |  |
| SW210 |  | W1312-W1327 |  |
| SW211 |  | W1328-W1343 |  |
| SW212 |  | W1344-W1359 |  |
| SW213 |  | W1360-W1375 |  |
| SW214 |  | W1376-W1391 |  |
| SW215 |  | W1392-W1407 |  |
| SW216 |  | W1408-W1423 |  |
| SW217 |  | W1424-W1439 |  |
| SW218 |  | W1440-W1455 |  |
| SW219 |  | W1456-W1471 |  |
| SW220 |  | W1472-W1487 |  |
| SW221 |  | W1488-W1503 |  |
| SW222 |  | W1504-W1519 |  |
| SW223 |  | W1520-W1535 |  |

In case of TOSLINE-S20LP, it does not have the scan healthy map.
Therefore these SW registers are not effective for the TOSLINE-S20LP.

## 2. Expanded Functions

| Special register | Name |  | Function |
| :---: | :---: | :---: | :---: |
| SW224 | TOSLINE-S20 scan healthy map | W1536-W1551 | - The corresponding bit is ON whenthe $W$ register is updated normally.- The lowest address of W registercorresponds to bit 0 in the SW |
| SW225 |  | W1552-W1567 |  |
| SW226 |  | W1568-W1583 |  |
| SW227 |  | W1584-W1599 |  |
| SW228 |  | W1600-W1615 |  |
| SW229 |  | W1616-W1631 |  |
| SW230 |  | W1632-W1647 |  |
| SW231 |  | W1648-W1663 |  |
| SW232 |  | W1664-W1679 |  |
| SW233 |  | W1680-W1695 |  |
| SW234 |  | W1696-W1711 |  |
| SW235 |  | W1712-W1727 |  |
| SW236 |  | W1728 - W1743 |  |
| SW237 |  | W1744-W1759 |  |
| SW238 |  | W1760-W1775 |  |
| SW239 |  | W1776-W1791 |  |
| SW240 |  | W1792-W1807 |  |
| SW241 |  | W1808 - W1823 |  |
| SW242 |  | W1824-W1839 |  |
| SW243 |  | W1840-W1855 |  |
| SW244 |  | W1856-W1871 |  |
| SW245 |  | W1872-W1887 |  |
| SW246 |  | W1888-W1903 |  |
| SW247 |  | W1904 - W1919 |  |
| SW248 |  | W1920-W1935 |  |
| SW249 |  | W1936-W1951 |  |
| SW250 |  | W1952-W1967 |  |
| SW251 |  | W1968 - W1983 |  |
| SW252 |  | W1984 - W1999 |  |
| SW253 |  | W2000 - W2015 |  |
| SW254 |  | W2016 - W2031 |  |
| SW255 |  | W2032-W2047 |  |

## 2. Expanded Functions

### 2.3 Network support function

### 2.3.1 IC memory card data access through computer link

The expanded file register data stored in the IC memory card can be read/written through RS-485 computer link.

There are two types of data storage format for the IC memory card. They are 8 k words per bank and 64 k words per bank. (Refer to XFER instruction) Note that the computer link command for these formats are slightly different.

## Expanded file register data read [MR]

Request message format (Host $\rightarrow \mathrm{T} 3 \mathrm{H}$ ):


ADR: Station address ... 01 to 32
Starting register:
For 8 k words per bank ..... F0000 to F8191 < — Upper case F
$\left.\begin{array}{rl}\text { For } 64 \mathrm{k} \text { words per bank ... } \mathrm{f0000} \text { to f65535 (bank 1) } \\ \text { f0000 to f57343 (bank 2) }\end{array}\right)<$ Lower case f
Bank: For 8 k words per bank ..... 1 to 15
For 64 k words per bank ... 1 to 2
N: Number of registers to be read ... 1 to 61 (61 words max.)
Sum: Check sum

Response message format (T3H $\rightarrow$ Host):


| Data \#N-1 | Data \#N | \& | Sum | ) C |
| :---: | :---: | :---: | :---: | :---: |

Data: Data in hexadecimal

## 2. Expanded Functions

## Expanded file register data Write [MW]

Request message format (Host $\rightarrow \mathrm{T} 3 \mathrm{H}$ ):


ADR: Station address ... 01 to 32
Starting register:
For 8 k words per bank ..... F0000 to F8191 < Upper case F
For 64 k words per bank ... f0000 to f65535 (bank 1) $\left.\begin{array}{rl}\text { f0000 to f57343 (bank 2) }\end{array}\right)<$ Lower case f
Bank: For 8 k words per bank ..... 1 to 15
For 64 k words per bank ... 1 to 2
N: Number of registers to be written ... 1 to 46 (see Note)
Data: Data in hexadecimal
Sum: Check sum

Response message format (T3H $\rightarrow$ Host):

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $($ | A | $A D R$ | S | T |  | Status |  | $\&$ | Sum | $)$ | CR |  |  |  |

Status: T3H operation status

## 2. Expanded Functions


(1) The maximum message text length is limited to 255 bytes.
(2) Shortening expression for starting register, bank, number and data (MW only) are available. E.g. F9 for F00009.
When shortening expression is used, the maximum number of MW command can be increased more than 46 words. In this case, it is limited by the maximum message text length ( 255 bytes).
(3) When an error has occurred, error response CE or EE is returned.

- If designated register or bank is out of the effective range, EE115 (register no./size error) is returned.
- If IC memory card is not installed or MMR setting for PU slot is not made, EE128 (No IC card error) is returned.
- If IC memory card is used for program storage, EE132 (IC card type error) is returned.
- If IC memory card is set as write-protect, EE134 (IC card writeprotect error) is returned.
(4) For general information of computer link function, refer to T-series Computer Link Operation Manual.


## 2. Expanded Functions

### 2.3.2 TOSLINE-S20LP (loop) support

In addition to the standard bus connection type TOSLINE-S20 (here called S20), the optical loop connection type TOSLINE-S20LP (here called S20LP) can be used with the T3H. (SN325: T3H station module of S20LP)
By using the S20LP, high speed control-data linkage is available as same as the S20. Furthermore, peer-to-peer communication between T3H's becomes available via S20LP.

- Up to two S20LP can be installed on a T3H. (S20LP and S20 total)
- The S20LP has 4 k words of scan transmission capacity.

The leading 2 k words of the scan memory can be assigned to T3H's link register $(\mathrm{W})$. And the following 2 k words can be read/written by using XFER instruction.

- The S20LP does not have the scan healthy map. Therefore, SW128 to SW255 are not used for the S20LP.
- The S20LP has the loop map which indicates loop connection status of each station. This loop map can be read by using READ instruction.
- By using SEND and RECV instructions, any register data of a T3H can be sent to other T3H, and any register data of other T3H can be read into a T3H, via S20LP. (peer-to-peer communication)

(1) The S20LP is under development.
(2) For details of the S20LP, refer to the separate manual for S20LP.


## 2. Expanded Functions

### 2.3.3 Ethernet support

The Ethernet module (EN311) is available for the T3H. By using the EN311, the T3H can be connected to Ethernet network.
Using the Ethernet module, the T3H supports the following communication functions.

- Computer link function:

Host computer on the Ethernet can perform data read/write, T3H status read, program up-load/down-load, etc. for the T3H, by using the T-series computer link command.

- Peer-to-peer communication:

By using SEND and RECV instructions, any register data of a T3H can be sent to other T3H, and any register data of other T3H can be read into a T3H, via Ethernet.

- Socket service:

Communication between a computer and a T3H user program is available by using SEND and RECV instructions. Maximum 8 ports of socket are available. The protocol can be selected either TCP/IP or UDP/IP for each port.

Up to four EN311's can be installed on a T3H.
To activate the EN311, SEND instruction is required to set parameters (IP address, UDP port number) and to send commands (communication start, etc.)

(1) The Ethernet module (EN311) is under development.
(2) For details of the EN311, refer to the separate manual for EN311.

### 2.4 Instructions

This section explains the specifications of the following instructions.

## Double-word multiplication and division (FUN042 D*/)

Combination instruction of multiplication and division for double-word data.
This instruction is not available on the T3.

## Essential PID (FUN156 PID3)

PID (Proportional, Integral, Derivative) control instruction which has the following features.

- Incomplete derivative action expanding stable application range
- Essential digital algorithm succeeding to benefits of analog PID

This instruction is not available on the T3.
Floating point essential PID (FUN232 FPID3)
Essential PID instruction for floating point data.
This instruction is not available on the T3.

## Expanded data transfer (FUN236 XFER)

Data transfer instruction between special objects, i.e. expanded file register in IC memory card, data in EEPROM, TOSLINE-S20 scan memory, etc.
Some functions are added to this instruction for the T3H.
Network data send (FUN239 SEND)
Used to peer-to-peer communication via TOSLINE-S20LP or Ethernet. This instruction is also used for Ethernet module (EN311) control.
This instruction is not available on the T3.

## Network data receive (FUN240 RECV)

Used to peer-to-peer communication via TOSLINE-S20LP or Ethernet. This instruction is also used for Ethernet module (EN311) control.
This instruction is not available on the T3.

## 2. Expanded Functions

### 2.4.1 Double-word multiplication and division ( $\mathrm{D} * /$ )

| FUN 042 | $\mathrm{D} * /$ | Double-word multiplication and division |
| :--- | :--- | :--- |

## Expression

$$
\text { Input -[ } A+1 \cdot A \quad D * / B+1 \cdot B \rightarrow C+1 \cdot C]- \text { Output }
$$

## Function

When the input is ON, the data of $A+1 \cdot A$ is multiplied by the data of $B+1 \cdot B$, and the product is divided by $B+3 \cdot B+2$, then the quotient is stored in $C+1 \cdot C$ and the remainder in $C+3 \cdot C+2$.
The data range is -2147483648 to 2147483647 . If the result (quotient) is out of the data range, the following limit value is stored.

Positive overflow: quotient $=2147483647$, remainder $=0$
Negative overflow: quotient $=-2147483647$, remainder $=0$

## Execution condition

| Input | Operation |  | Output | ERF |
| :---: | :--- | :--- | :---: | :---: |
| OFF | No execution | OFF | - |  |
| ON | $B+3 \cdot B+2 \neq 0$, no overflow | Normal execution | ON | - |
|  | $B+3 \cdot B+2 \neq 0$, overflow | Limit | ON | ON |
|  | $B+3 \cdot B+2=0$ | No execution | OFF | ON |

## Operand

|  | Name | Device |  |  |  |  |  |  |  |  |  | Register |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Constant | Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | S |  | R | Z |  | C. | 1 | O | X | Y | S | L | R | W | T | $C$ | D | F | W | $\begin{aligned} & 0 \\ & \mathrm{O} \\ & \hline \end{aligned}$ | 1 | J | K |  |  |
| A | Operation data |  |  |  |  |  |  |  |  |  |  | $\checkmark$ | $V$ | $\checkmark$ |  |  |  |  |  | $\checkmark$ | $\checkmark$ |
| B | Multiplier, divisor |  |  |  |  |  |  |  |  |  |  | $\checkmark$ | V | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |
| C | Result |  |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |

## Example



When R0200 is ON, the double-word data of D0351-D0350 is multiplied by the data of D0262.D0261, and the product is divided by the data of D0264-D0263, then the quotient is stored in D0401•D0400 and the remainder in D0403.D0402.

## 2. Expanded Functions

If the data of D0351•D0350 is 23437688 , D0262.D0261 is 1876509, and D0264•D0263 is 113487 , the quotient (387542471) is stored in D0401.D0400 and the remainder (64815) is stored in D0403.D0402.


## Note

- Edge execution modifier is also available for this instruction.


## 2. Expanded Functions

### 2.4.2 Essential PID (PID3)

## FUN 156 PID3 $\quad$ Essential PID

## Expression

```
Input -[ A PID3 B \(\rightarrow C\) ]- Output
```


## Function

Performs PID (Proportional, Integral, Derivative) control which is a fundamental method of feed-back control. (Pre-derivative real PID algorithm)
This PID3 instruction has the following features.

- For derivative action, incomplete derivative is used to suppress interference of high-frequency noise and to expand the stable application range,
- Controllability and stability are enhanced in case of limit operation for MV, by using digital PID algorithm succeeding to benefits of analog PID.
- Auto, cascade and manual modes are supported in this instruction.
- Digital filter is available for PV.
- Direct / reverse operation is selectable.


## Execution condition

| Input | Operation | Output |
| :---: | :--- | :---: |
| OFF | Initialization | OFF |
| ON | Execute PID every setting interval | ON when <br> execution |

## Operand

| Name |  | Device |  |  |  |  |  |  |  |  |  | Register |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Constant | Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | S |  | R |  |  | C. |  |  | $\begin{array}{\|c\|} \hline x \\ w \\ \hline \end{array}$ | $\begin{gathered} \mathrm{Y} \\ \mathrm{w} \end{gathered}$ | $\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{w} \end{aligned}$ | $\begin{array}{c\|} \hline S \\ w \end{array}$ | $\begin{array}{\|c\|} \hline L \\ W \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline R \\ W \\ \hline \end{array}$ | W | T | C | D |  | $=\begin{aligned} & 1 \\ & w \\ & w \end{aligned}$ | $\begin{array}{\|c} \hline 0 \\ \mathrm{w} \\ \hline \end{array}$ |  | J | K |  |  |
|  | $\begin{aligned} & \text { Top of input } \\ & \text { data } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |
| B | Top of parameter |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |
|  | Top of output data |  |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |


| Input data |  |  |
| ---: | :--- | ---: |
|  | \|rocess input value | PVC |
| $A+1$ | A-mode set value | ASV |
| $A+2$ | C-mode set value | CSV |
| $A+3$ | M-mode MV input | MMV |
| $A+4$ | MV tracking input | TMV |
| $A+5$ | Mode setting | MODE |
|  |  |  |

A-mode: Auto mode
C-mode: Cascade mode
M-mode: Manual mode

Control parameter

| $B$ | Proportional gain | $\mathrm{K}_{\mathrm{P}}$ |
| :---: | :---: | :---: |
| B+1 | Integral time | $\mathrm{T}_{1}$ |
| B+2 | Derivative time | T ${ }_{\text {D }}$ |
| B+3 | Dead-band | GP |
| B+4 | A-mode initial SV | ISV |
| B+5 | Input filter constant | FT |
| B+6 | ASV differential limit | DSV |
| B+7 | MMV differential limit | MMV |
| B+8 | Initial status | STS |
| B+9 | MV upper limit | MH |
| B+10 | MV lower limit | ML |
| B+11 | MV differential limit | DMV |
| B+12 | Control interval setting | n |

Output data

| $C$ | Manipulation value | MV |
| :---: | :---: | :---: |
| +1 | Last error | $\mathrm{e}_{\mathrm{n}-1}$ |
| +2 | Last derivative value | $\mathrm{D}_{\mathrm{n}-1}$ |
| +3 | Last PV | $\mathrm{PV}_{\mathrm{n}-1}$ |
| +4 | Last SV | $\mathrm{SV}_{\mathrm{n}-1}$ |
| +5 | Integral remainder | Ir |
| +6 | Derivative remainder | Dr |
| +7 | Internal MV | $\mathrm{MV}_{\mathrm{n}}$ |
| +8 | Internal counter | C |
| +9 | Control interval | $\Delta \mathrm{t}$ |

## 2. Expanded Functions

## Control block diagram



Integral action control:
When MV is limited (H/L, DMV) and the integral value has same sign as limit over, integral action is stopped.

Velocity $\rightarrow$ Position conversion:
In Direct mode, MV increases when PV is increased. $\quad \rightarrow M V_{n}=M V_{n-1}-\Delta M V_{n}$ In Reverse mode, MV decreases when PV is increased. $\quad \rightarrow M V_{n}=M V_{n-1}+\Delta M V_{n}$

Gap (dead-band) operation:


## Algorithm

Digital filter:
$P V_{n}=(1-F T) \cdot P V C+F T \cdot P V_{n-1}$
Here,

$$
0.000 \leq \mathrm{FT} \leq 0.999
$$

## 2. Expanded Functions

PID algorithm:
$\Delta M V_{n}=K p \cdot\left(\Delta P_{n}+\Delta \mathrm{l}_{\mathrm{n}}+\Delta \mathrm{D}_{\mathrm{n}}\right)$
$M V_{n}=M V_{n-1} \pm \Delta M V_{n}$
Here,

$$
\begin{aligned}
& \Delta P_{n}=e_{n}-e_{n-1} \\
& e_{n}=S V_{n}-P V_{n} \quad(\text { If GP } \neq 0, \text { Gap is applied }) \\
& \Delta I_{n}=\frac{e_{n} \cdot \Delta t+I r}{T I} \quad\left(\text { If } T_{I}=0, \Delta I_{n}=0\right) \\
& \Delta D_{n}=\frac{T D \cdot\left(P V_{n-1}-P V_{n}\right)-\Delta t \cdot D_{n-1}+D r}{\Delta t+\eta \cdot T D} \\
& D_{n}=D_{n-1}+\Delta D_{n} \\
& \eta=0.1 \text { (Fixed })
\end{aligned}
$$

## Parameter details

| A | Process input value PVC (0.00 to $100.00 \%)$ | Data range: 0 to 10000 |
| ---: | :--- | :--- |
| $A+1$ | Auto mode set value ASV $(0.00$ to $100.00 \%)$ | Data range: 0 to 10000 |
| $A+2$ | Cascade mode set value CSV (0.00 to $100.00 \%)$ | Data range: 0 to 10000 |
| $A+3$ | Manual mode MV MMV (-25.00 to $125.00 \%)$ | Data range: -2500 to 12500 |
| $A+4$ | MV tracking input TMV $(-25.00$ to $125.00 \%)$ | Data range: -2500 to 12500 |

A+5 Mode setting MODE

$B$ Proportional gain $\mathrm{K}_{\mathrm{P}}$ (0.00 to 327.67)
$B+1 \quad$ Integral time $T_{1}\left(0.000\right.$ to 32.767 min., stop if $\left.T_{1}=0\right)$
$B+2$ Derivative time $T_{D}$ ( 0.000 to 32.767 min .)
B+3 Gap (dead-band) GP (0.00 to 10.00 \%)
$B+4$ Auto mode initial set value ISV (0.00 to 100.00 \%)
$B+5$ Input filter constant FT (0.000 to 0.999 )
$B+6 \quad$ ASV differential limit DSV (0.00 to $100.00 \% / \Delta t)$
$B+7$ MMV differential limit DMMV (0.00 to $100.00 \% / \Delta t$ )

0 : No
1: Yes
Operation mode
00 : Manual mode
01 : Auto mode
10 : Cascade mode
11: (Reserve)
Tracking designation

Data range: 0 to 32767
Data range: 0 to 32767
Data range: 0 to 32767
Data range: 0 to 1000
Data range: 0 to 10000
Data range: 0 to 999
Data range: 0 to 10000
Data range: 0 to 10000

## 2. Expanded Functions

B+8 Initial status STS


0 : Direct
1: Reverse
B+9 MV upper limit MH (-25.00 to $125.00 \%$ ) Data range: -2500 to 12500
$B+10 \quad$ MV lower limit ML ( -25.00 to $125.00 \%$ ) Data range: -2500 to 12500
$B+11$ MV differential limit DMV ( 0.00 to $100.00 \% / \Delta t$ ) Data range: 0 to 10000
$B+12$ Control interval setting $n$ ( 1 to 32767 times) Data range: 1 to 32767
Executes PID every $n$ scan. Therefore, control interval $\Delta t=n \times$ constant scan interval (It is treated as $\mathrm{n}=1$ when $\mathrm{n} \leq 0$ )

C Manipulation value MV (-25.00 to 125.00 \%) Data range: -2500 to 12500 C+1
$\vdots$
$C+9$ Internal work area

## Operation

1. When the instruction input is OFF:

Initializes the PID3 instruction.
Operation mode is set as specified by $B+8 . \quad A+5$ bit $0,1 \leftarrow B+8$ bit 0,1
Auto mode SV is set as specified by $B+4$.
ASV $\leftarrow$ ISV
Manual mode MV is set as current MV.
$M M V \leftarrow M V$
Internal calculation data is initialized.
MV remains unchanged.
2. When the instruction input is ON :

Executes PID calculation every n scan which is specified by $B+12$. The following operation modes are available according to the setting of $A+5$.

- Auto mode

This is a normal PID control mode with ASV as set value.
Set value differential limit DSV, manipulation value upper/lower limit MH/ML and differential limit DMV are effective.
Bump-less changing from auto mode to manual mode is available. (Manual mode manipulation value MMV is over-written by current MV automatically. MMV $\leftarrow$ MV)

## 2. Expanded Functions

- Manual mode

In this mode, the manipulation value MV can be directly controlled by the input value of MMV. MV differential limit for manual mode DMMV is effective. MH/ML and DMV are not effective. When mode is changed from manual to auto or cascade, the operation is started from the current MV.

- Cascade mode

This is a mode for PID cascade connection. PID is executed with CSV as set value.
Different from the auto mode, set value differential limit is not effective. Manipulation value upper/lower limit MH/ML and differential limit DMV are effective.
Bump-less changing from cascade mode to manual mode is available. (Manual mode manipulation value MMV is over-written by current MV automatically. MMV $\leftarrow M V$ )
And, bump-less changing from cascade mode to auto mode is available. (Auto mode set value ASV is over-written by current CSV automatically. ASV $\leftarrow$ CSV)

- MV tracking

This function is available in auto and cascade modes. When the tracking designation ( $A+5$ bit 2 ) is ON , tracking input TMV is directly output as MV.
Manipulation value upper/lower limit MH/ML is effective, but differential limit DMV is not effective. When the tracking designation is changed to OFF, the operation is started from the current MV.

## Note

- PID3 instruction is only usable on the main-program.
- PID3 instruction must be used under the constant scan mode. The constant scan interval can be selected in the range of 10 to $200 \mathrm{~ms}, 10 \mathrm{~ms}$ increments.
- The data handled by the PID3 instruction are \% units. Therefore, process input value PVC, manipulation value MV, etc., should be converted to \% units (scaling), before and/or after the PID3 instruction. For this purpose, the function generator instruction (FUN165 FG) is convenient.


## 2. Expanded Functions

### 2.4.3 Floating point essential PID (FPID3)

## FUN 232 $\quad$ FPID3 $\quad$ Floating point essential PID

## Expression

Input -[ $A+1 \cdot A$ FPID3 $B+1 \cdot B \rightarrow C+1 \cdot C]-$ Output

## Function

Performs PID (Proportional, Integral, Derivative) control which is a fundamental method of feed-back control. (Pre-derivative real PID algorithm)
The operation of this FPID3 instruction is the same as the PID3 (FUN156) instruction except for dealing data as floating point data.

## Execution condition

| Input | Operation | Output |
| :---: | :--- | :---: |
| OFF | Initialization | OFF |
| ON | Execute PID every setting interval | ON when <br> execution |

Operand

| Name |  | Device |  |  |  |  |  |  |  |  |  | Register |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{\|l\|} \hline \text { Con- } \\ \text { stant } \end{array}$ | Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X |  | S |  |  |  |  | C. |  |  | X W | Y | S | L | R |  | T | C | D | F | I | $\begin{aligned} & \hline \mathrm{O} \\ & \mathrm{w} \end{aligned}$ |  | J |  |  |  |
|  | Top of input data |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |
| $B$ | Top of parameter |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |
|  | Top of output data |  |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |

Input data

| $A+1 \cdot A$ | Process input value PVC  <br>  A-mode set value ASV <br> C-mode set value CSV  <br>  M-mode MV input MMV <br>  MV tracking input TMV <br> Mode setting  MODE |
| ---: | :--- | ---: |

A-mode: Auto mode
C-mode: Cascade mode M-mode: Manual mode

Control parameter

| Proportional gain | $\mathbf{K}_{\mathrm{P}}$ |
| :--- | ---: |
| Integral time | $\mathrm{T}_{\mathrm{I}}$ |
| Derivative time | $\mathrm{T}_{\mathrm{D}}$ |
| Dead-band | GP |

A-mode initial SV ISV \begin{tabular}{|lr|}
\hline Input filter constant \& FT <br>
\hline ASV differential limit \& DSV <br>
\hline

 

\hline MMV differential limit \& DMMV <br>
\hline Initial status \& STS <br>
\hline MV upper limit \& MH <br>
\hline MV lower limit \& ML <br>
\hline MV differential limit \& DMV <br>
\hline \multicolumn{2}{|l|}{ Control interval setting } <br>
\hline
\end{tabular}

Output data

| $C+1 \cdot C$ | Manipulation value | MV |
| :---: | :---: | :---: |
|  | Last error | $\mathrm{e}_{\mathrm{n}-1}$ |
|  | Last derivative value | $\mathrm{D}_{\mathrm{n}-1}$ |
|  | Last PV | $\mathrm{PV}_{\mathrm{n}-1}$ |
|  | Last SV | $\mathrm{SV}_{\mathrm{n}-1}$ |
|  | Integral remainder | Ir |
|  | Derivative remainder | Dr |
|  | Internal MV | MV |
|  | Internal counter | C |
|  | Control interval | $\Delta \mathrm{t}$ |

## 2. Expanded Functions

## Control block diagram



Integral action control:
When MV is limited (H/L, DMV) and the integral value has same sign as limit over, integral action is stopped.

Velocity $\rightarrow$ Position conversion:
In Direct mode, MV increases when PV is increased. $\quad \rightarrow \mathrm{MV}_{n}=M V_{n-1}-\Delta M V_{n}$ In Reverse mode, MV decreases when PV is increased. $\quad \rightarrow M V_{n}=M V_{n-1}+\Delta M V_{n}$

Gap (dead-band) operation:


## Algorithm

Digital filter:
$P V_{n}=(1-F T) \cdot P V C+F T \cdot P V_{n-1}$
Here,

$$
0 \leq \mathrm{FT}<1
$$

## 2. Expanded Functions

PID algorithm:
$\Delta M V_{n}=K p \cdot\left(\Delta P_{n}+\Delta \mathrm{l}_{\mathrm{n}}+\Delta \mathrm{D}_{\mathrm{n}}\right)$
$M V_{n}=M V_{n-1} \pm \Delta M V_{n}$

Here,

$$
\begin{aligned}
& \Delta P_{n}=e_{n}-e_{n-1} \\
& e_{n}=S V_{n}-P V_{n} \quad(\text { If GP } \neq 0, \text { Gap is applied }) \\
& \Delta I_{n}=\frac{e_{n} \cdot \Delta t+I r}{T I} \quad\left(\text { If } T_{I}=0, \Delta I_{n}=0\right) \\
& \Delta D_{n}=\frac{T D \cdot\left(P V_{n-1}-P V_{n}\right)-\Delta t \cdot D_{n-1}+D r}{\Delta t+\eta \cdot T D} \\
& D_{n}=D_{n-1}+\Delta D_{n} \\
& \eta=0.1(\text { Fixed })
\end{aligned}
$$

## Parameter details



## 2. Expanded Functions

$B+17 \cdot B+16$ Initial status STS $B+17$
$B+16$


Initial operation mode
00 : Manual mode
01 : Auto mode
10 : Cascade mode
11: (Reserve)
_-Direct / reverse selection
0 : Direct
1: Reverse

| $B+19 \cdot B+18$ | MV upper limit MH (-25 to $125 \%)$ | Data range: -25.0 to 125.0 |
| :--- | :--- | :--- |
| $B+21 \cdot B+20$ | MV lower limit ML (-25 to $125 \%)$ | Data range: -25.0 to 125.0 |
| $B+23 \cdot B+22$ | MV differential limit DMV $(0$ to $100 \% / \Delta \mathrm{t})$ | Data range: 0.0 to 100.0 |
| $B+25 \cdot B+24$ | Control interval setting $\mathrm{n}(1$ to 32767 times $)$ | Data range: 1.0 to 32767.0 |
|  | Executes PID every n scan. Therefore, control interval $\Delta \mathrm{t}=\mathrm{n} \times$ constant scan interval |  |
|  | (It is treated as $\mathrm{n}=1$ when $\mathrm{n} \leq 0)$ |  |

$C+1 \cdot C$ Manipulation value MV (-25 to $125 \%$ ) $C+3 \cdot C+2$
5. $C+14$ Internal work area

## Operation

1. When the instruction input is OFF:

Initializes the FPID3 instruction.
Operation mode is set as specified by $B+17 \cdot B+16 . \quad A+10$ bit $0,1 \leftarrow B+16$ bit 0,1
Auto mode SV is set as specified by $B+9 \cdot B+8$. ASV $\leftarrow$ ISV
Manual mode MV is set as current MV.
MMV $\leftarrow M V$
Internal calculation data is initialized.
MV remains unchanged.
2. When the instruction input is ON :

Executes PID calculation every n scan which is specified by $B+25 \cdot B+24$. The following operation modes are available according to the setting of $A+11 \cdot A+10$.

- Auto mode

This is a normal PID control mode with ASV as set value.
Set value differential limit DSV, manipulation value upper/lower limit MH/ML and differential limit DMV are effective.
Bump-less changing from auto mode to manual mode is available. (Manual mode manipulation value MMV is over-written by current MV automatically. MMV $\leftarrow \mathrm{MV}$ )

- Manual mode

In this mode, the manipulation value MV can be directly controlled by the input value of MMV.
MV differential limit for manual mode DMMV is effective. MH/ML and DMV are not effective.
When mode is changed from manual to auto or cascade, the operation is started from the current MV.

- Cascade mode

This is a mode for PID cascade connection. PID is executed with CSV as set value.
Different from the auto mode, set value differential limit is not effective. Manipulation value upper/lower limit MH/ML and differential limit DMV are effective.
Bump-less changing from cascade mode to manual mode is available. (Manual mode manipulation value MMV is over-written by current MV automatically. MMV $\leftarrow M V$ )
And, bump-less changing from cascade mode to auto mode is available. (Auto mode set value ASV is over-written by current CSV automatically. ASV $\leftarrow$ CSV)

- MV tracking

This function is available in auto and cascade modes. When the tracking designation ( $A+10$ bit 2 ) is ON , tracking input TMV is directly output as MV.
Manipulation value upper/lower limit MH/ML is effective, but differential limit DMV is not effective.
When the tracking designation is changed to OFF, the operation is started from the current MV.

## Note

- FPID3 instruction is only usable on the main-program.
- FPID3 instruction must be used under the constant scan mode. The constant scan interval can be selected in the range of 10 to $200 \mathrm{~ms}, 10 \mathrm{~ms}$ increments.
- The data handled by the FPID3 instruction are \% units. Therefore, process input value PVC, manipulation value MV, etc., should be converted to \% units (scaling), before and/or after the FPID3 instruction.


## 2. Expanded Functions

### 2.4.4 Expanded data transfer (XFER)

## FUN 236 $\quad$ XFER $\quad$ Expanded data transfer

## Expression

```
Input -[ A XFER B }->\mathrm{ C]- Output
```


## Function

When the input is ON, data block transfer is performed between the source which is indirectly designated by $A$ and $A+1$ and the destination which is indirectly designated by $C$ and $C+1$. The transfer size (number of words) is designated by $B$.
The transfer size is 1 to 256 words. (except for writing into EEPROM)
Data transfer between the following objects are available.

- CPU register $\leftrightarrow$ CPU register
- CPU register $\leftrightarrow$ Expanded F register (IC memory card)
- CPU register $\leftrightarrow$ TOSLINE-S20 or TOSLINE-S20LP (here called S20 or S20LP)
- CPU register $\leftrightarrow$ EEPROM (D register)


## Execution condition

| Input | Operation | Output | ERF |
| :---: | :--- | :---: | :---: |
| OFF | No execution | OFF | - |
| ON | Normal execution | ON | - |
|  | When error is occurred (see Note) | ON | Set |

## Operand

| Name |  | Device |  |  |  |  |  |  |  |  |  | Register |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Constant | Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | S |  | R | Z |  | C. | 1 |  | $\begin{array}{\|c\|} \hline X \\ \mathrm{~W} \\ \hline \end{array}$ | W | S | L | R | W | T | C | I | F | $\begin{array}{\|c\|} \hline \begin{array}{c} 1 \\ w \\ \hline \end{array} \\ \hline \end{array}$ | W | 1 | J | K |  |  |
|  | Source parameter |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |
| B | $\begin{aligned} & \text { Transfer } \\ & \text { size } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  | $\checkmark$ | V | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |
|  | Destination parameter |  |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |  | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |


| Source parameter |  |  |
| :---: | :---: | :---: |
| $A$ | Bank / CH | Type |
| A+1 | Leading address |  |


| Transfer size and status |  |
| :---: | :---: |
| $B+1$ | Transfer size |
|  | Status flag |
| $B+16$ | (Scan healthy map) |
|  | Max. 16 words |



- Refer to the following table for contents of each designation.
- The status flag is created only when the transfer from S20 to Register.


## Transfer parameter table

|  | Transfer object | Bank / CH | TYPE | Leading address | Transfer size | $\begin{gathered} \text { Status } \\ \text { flag } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | XW/YW register | 0 | H00 | $\begin{aligned} & 0 \text { to } 511 \text { (T3H) } \\ & 0 \text { to } 255 \text { (T3) } \\ & 0 \text { to } 63 \text { (T2) } \\ & \hline \end{aligned}$ | 1 to 256 | None |
|  | W register | 0 | H01 | $\begin{aligned} & 0 \text { to } 2047 \text { (T3H) } \\ & 0 \text { to } 1023 \text { (T3/T2) } \end{aligned}$ | 1 to 256 | None |
|  | LW register | 0 | H02 | 0 to 255 (T3H/T3/T2) | 1 to 256 | None |
|  | RW register | 0 | H03 | 0 to 999 (T3H) 0 to 511 (T3) 0 to 127 (T2) | 1 to 256 | None |
|  | D register | 0 | H04 | $\begin{array}{\|l\|} \hline 0 \text { to } 8191 \text { (T3H/T3) } \\ 0 \text { to } 4095 \text { (T2) } \\ \hline \end{array}$ | 1 to 256 | None |
|  | F register | 0 | H05 | $\begin{array}{\|l} \hline 0 \text { to } 32767 \text { (T3H) } \\ 0 \text { to } 8191 \text { (T3) } \\ 0 \text { to } 1023 \text { (T2) } \\ \hline \end{array}$ | 1 to 256 | None |
| Expanded F register (IC memory card) * |  | 1 to 15 | H05 | 0 to 8191 (T3H/T3/T2) | 1 to 256 | None |
|  |  | 1 or 2 | H06 | 0 to 65535 (bank 1) (T3H) 0 to 57343 (bank 2) (T3H) | 1 to 256 | None |
|  | 0 scan memory | 1 or $2^{2}$ | H10 | 0 to 1023 (T3H/T3/T2) | 1 to 256 | Yes ${ }^{3}$ |
|  | OLP scan memory ${ }^{\text {4 }}$ | 1 or 2 | H10 | 0 to 4095 (T3H) | 1 to 256 | None |
| EEPROM (D register) |  | 0 | H2O | $\begin{array}{\|l\|} \hline 0 \text { to } 8191 \text { (T3H/T3) } \\ 0 \text { to } 4095 \text { (T2) } \end{array}$ | Source (read) -1 to 256 Destination (write) 1 to 128 (T3H) 1 to 64 (T3) 1 to 32 (T2) | None |

*1) Two format types of the IC memory card is available. They are 8 k words/bank (type: H05) and 64 k words/bank (type: H06). Type H06 is available only in the T3H.
*2) Channel 1 (CH1) only for the T2.
*3) The status flag is created only when S20 is designated as transfer source.
*4) S20LP is available only with the T3H. The S20LP does not have the scan healthy map. Therefore status flag is not created for S20LP.

## 2. Expanded Functions

## CPU register $\leftrightarrow$ Expanded F register (IC memory card)

Expanded F register configuration:
< Type H05 >

<Type H06 >


Example:


| Source designation |  |  | Transfer size |  | Destination designation |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RW000 | H00 | H04 | RW002 | 00045 | RW010 | H 01 H 05 |
| RW001 |  | 00 |  |  | RW011 | 00000 |

When R0000 is ON, 45 words data starting with D0000 is transferred to Bank 1 F0000 and after in the IC memory card.

Remarks:

- When the IC memory card is used for expanded F register, MMR setting on the PU slot is necessary by I/O allocation.
- In case of the T2, the capacity of $F$ register in CPU is 1024 words. However, the T2 can access 8192 words $\times 15$ banks ( $=122880$ words) of expanded $F$ register in the IC memory card.
- When type H06 is used in the T3H, the expanded F register can be accessed as F00000 to F65535 (bank 1) and F00000 to F57343 (bank 2).


## 2. Expanded Functions

## CPU register $\leftrightarrow$ S20/S20LP scan memory

Example:


| Source designation |  | Transfer size |  | Destination designation |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
| RW000 | H 00 | H 01 |  |  |  |
| RW001 | 00000 | RW002 |  |  |  |

W0000 (CPU register) 10 words transfer
Channel 1 S20/S20LP scan memory address 00000

When R0000 is ON, 10 words data starting with W0000 is transferred to scan memory address 00000 and after of channel 1 S20/S20LP.

Remarks:

- When writing data into S20/S20LP scan memory, confirm that the address range is S20/S20LP's data send block.
- If S20/S20LP scan memory is accessed only by this XFER instruction, the network assignment, i.e. "LINK" or "GLOBAL" setting, is not necessary.
- When S20 is designated as source, the status flag (scan healthy map) for the read-out data is stored in operand $B+1$ and after. (Status flag is not created for S20LP)
For example, when 99 words data is read from S20 with using RW030 as transfer size designation, RW031 to RW037 (7 words) are used to store the scan healthy map.



## 2. Expanded Functions

## CPU register $\leftrightarrow$ EEPROM (D register)

EEPROM D register configuration:
<T3H >

| D0000 | Page 1 |
| :--- | :--- |
| D0127 |  |
| D0128 | Page 2 |
| D0255 |  |
| D0256 | Page 3 |
| D0383 |  |
|  |  |
| D7936 |  |
| D8191 |  |
|  |  |
|  |  |

128 words/page, 64 pages Total 8192 words

|  | <T3 > |
| :---: | :---: |
| D0000 | Page 1 |
| D0063 |  |
|  | Page 2 |
| D0127 |  |
| D0128 | Page 3 |
| D0191 |  |
|  |  |
| D8128 |  |
|  | Page 128 |
| D8191 |  |

64 words/page, 128 pages
Total 8192 words
< T2 >

| D0000 | Page 1 |
| :--- | :--- |
| D0031 |  |
| D0032 | Page 2 |
| D0063 |  |
| D0064 | Page 3 |
| D0095 |  |
|  |  |
| D4064 |  |
|  |  |

32 words/page, 128 pages
Total 4096 words

Example:


| Source designation |  | Transfer size |  | Destination designation |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RW000 | H00 | RW002 | 00032 | RW010 | H00 |
| RW001 | 00100 |  |  | RW011 | 00064 |
|  | 0 (CPU register) |  | rds transfer |  | 64 (EEPROM) |

When R0000 is ON, 32 words data starting with D0100 is transferred to D0064 and after in the EEPROM. (Data write into EEPROM)

## Remarks:

- EEPROM is internally divided by page.
- Writing data into the EEPROM is available within one page at a time.
- For data reading from the EEPROM, there is no need to consider the pages.
- The EEPROM has a life limit for data writing into an address. It is 100,000 times. Pay attention not to exceed the limit. (EEPROM alarm flag = S0007 is not updated by executing this instruction)
- Once data writing into the EEPROM is executed, EEPROM access (read/write) is prohibited for the duration of 10 ms . Therefore, minimum 10 ms interval is necessary for data writing.


## 2. Expanded Functions

## Note

- Edge execution modifier is also available for this instruction.
- The XFER instruction is not executed as error in the following cases. (ERF = S0051 is set to ON)

| Transfer | Error cause |  |
| :--- | :--- | :--- |
| Between CPU | 1) | When the transfer size is 0 or more than 256. |
| registers | 2) | When the source/destination table of transfer is out of the valid range. |
| CPU register to | 1) | When the transfer size is 0 or more than 256. |
| expanded F register | 2) | When the source/destination table of transfer is out of the valid range. |
|  | 3) | When IC memory card is not installed or MMR setting is not made. |
|  | 4) | When the IC memory card is write-protect state. for data writing) |
|  | 5) | When program is stored in the IC memory card. (detected only T3H) |
| CPU register to | 1) | When the transfer size is 0 or more than 256. |
| S20/S20LP | 2) | When the source/destination table of transfer is out of the valid range. |
|  | 3) | When channel designation is other than 1 or 2. (other than 1 for T2) |
|  | 4) | When S20/S20LP is not installed or not allocated. |
| 5) | When status flag area is not sufficient. |  |
|  | 6) | When an odd address is designated as the leading address in the case of |
|  | S20/S20LP is set as double-word access. |  |
|  | 7) | When the transfer size is odd address in the case of S20/S20LP is set as |
|  | double-word access. |  |
|  | 8) | When the S20/S20LP module is not normal. |
| CPU register to | When the transfer size is 0 or more than 256. |  |
|  | 2) | When the source/destination table of transfer is out of the valid range. |
|  | 3) | When the data writing address range exceeds page boundary. |
|  | 4) | When this instruction is executed during EEPROM access inhibited (10 ms). |
|  | 5) | When the CPU does not have EEPROM. |
| Others | 1) | When source/destination designation is invalid. |
|  | 2) | When an invalid transfer combination is designated. |
|  | 3) | When the index modification is used for an operand and register boundary |
|  |  | error is occurred as the result of the index modification. (in this case, the |
| instruction output comes OFF) |  |  |

## 2. Expanded Functions

### 2.4.5 Network data send (SEND)

\section*{| FUN 239 | SEND | Network data send |
| :--- | :--- | :--- |}

## Expression

```
Input -[ A SEND B]- Output
```


## Function

This instruction sends the designated range of register data to another T3H through the network.
(Network: TOSLINE-S20LP or Ethernet)
The transfer source register (self-station) is designated by $A+3$ and $A+4$.
The transfer destination register (target-station) is designated by $A+5$ and $A+6$.
The transfer size (number of words) is designated by $A+2$. The maximum transfer size is 128 words (S20LP), or 485 words (Ethernet).
The designation method of the target-station is different between S20LP and Ethernet.
This instruction is also used for other functions of the Ethernet module. Refer to the Ethernet module (EN311) manual for detailed functions used for the EN311.

## Execution condition

| Input | Operation | Output | ERF |
| :---: | :--- | :---: | :---: |
| OFF | No execution | OFF | - |
| ON | During execution | OFF | - |
|  | Normal complete | ON | - |
|  | When error is occurred (see Note) | ON | Set |

## Operand



| $\begin{aligned} & \text { < In case of S20LP > } \\ & \text { C } \quad \mathrm{B} \quad 7 \\ & \hline \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $A$ | MID | CH | Target station No. |
| A+1 | 0 (fixed) |  |  |
| A+2 | Transfer size |  |  |
| $A+3$ | Register type (self-station) |  |  |
| A+4 | Leading address (self-station) |  |  |
| A+5 | Register type (target-station) |  |  |
| A+6 | Leading address (target-station) |  |  |
| $A+7$ | Response time limit |  |  |


|  | $c_{\mathrm{C}}^{<\mathrm{In} \text { case of Ethernet > }}$ |  |  |
| :---: | :---: | :---: | :---: |
| $A$ | MID | CH | 0 (fixed) |
| A+1 | Request command |  |  |
| A+2 | Transfer size |  |  |
| A+3 | Register type (self-station) |  |  |
| A+4 | Leading address (self-station) |  |  |
| A+5 | Register type (target-station) |  |  |
| A+6 | Leading address (target-station) |  |  |
| $A+7$ | Response time limit |  |  |
| A+8 | Target-station IP address |  |  |
| A+9 |  |  |  |
| A+10 | Target-station UDP port No. |  |  |

Note) Parameters for the Ethernet varies depending on the request command. Above figure shows the parameters for the register read/write command (H0021). Refer to the EN311 manual.

## 2. Expanded Functions

|  | F | E | D C | B |  | 8 | 7 |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B$ | Abn | Busy | Status |  | 0 |  |  | TermSTS |  |
| $B+1$ | Transmission error information (if TermSTS is H0B) |  |  |  |  |  |  |  |  |

Inside the parameter:

| Transfer parameter | S20LP | Ethernet |
| :---: | :---: | :---: |
| MID (network type) | 2 | 3 |
| CH (channel of self-station) | 1 or 2 (max. two S20LP's on T3H) | 1 to 4 (max. four EN311's on T3H) |
| Target station No. | 1 to 64 | 0 (fixed) |
| Request command | 0 (fixed) | H0021: Register read/write (for other commands, refer to EN311 manual) |
| Transfer size (number of words) | ```1 to }12 (max. }84\mathrm{ words for T or C register) (designation across T511 and T512 is not allowed)``` | 1 to 485 (max. 323 words for T or C register) (designation across T511 and T512 is not allowed) |
| Register type | H0000: XW/YW register <br> H0001: W register <br> H0002: LW register <br> H0003: RW register <br> H0004: D register <br> H0005: F register (CPU) <br> H**05: Expanded F register <br> (IC card, 8 k words/bank, ** is bank No. 01-0F) <br> H**06: Expanded F register <br> (IC card, 64k words/bank, ** is bank No. 01-02) <br> H0007: T register <br> H0008: C register <br> H0009: SW register |  |
| Leading address | Designates the leading register address to be transferred |  |
| Response time limit | Specifies the time limit of the response from target-station. (0.1 s units) When the bit F is set to ON , the following default value is used. <br> S20LP ...... 4.1 s <br> Ethernet ... 30 s |  |
| Target-station IP address | N/A | Designates the IP address of the target-station |
| Target-station UDP port No. | N/A | Designates the UDP port No. of the target-station |

## 2. Expanded Functions

Inside the parameter (cont'd):

| Status | S20LP | Ethernet |
| :---: | :---: | :---: |
| Abn | 0: Normal complete <br> 1: Error complete |  |
| Busy | 0: Initial state <br> 1: Transmission port busy |  |
| Status | 0: Initial state <br> 1: While send requesting <br> 2: While waiting response <br> 3: Complete |  |
| TermSTS | H00: Normal complete <br> H01: Register designation error <br> H02: Response time-out <br> H03: Parameter error <br> H04: Register write protect <br> H05: (Reserve) <br> H06: Module error (send time-out) <br> H07: No send channel <br> H08: Invalid station No. <br> H09: Transfer size error <br> HOA: Boundary error <br> H0B: Transmission error <br> HOC: I/O no answer error <br> HOD: IC card designation error <br> HOE: (Reserve) <br> H0F: (Reserve) | Bit 7 indicates the error is occurred whether self-station or target-station. <br> 0: Self-station <br> 1: Target-station |
| Transmission error information | When TermSTS is HOB, the error information is stored. ( 0 for other cases) For detailed information, refer to the S20LP or EN311 manual. |  |

## Example

## R0020 <br> $1 \longmapsto$ [RW010 SEND RW050]

| RW010 | 2 | 1 | 3 |
| :--- | :---: | :---: | :---: |
| RW011 | 0 |  |  |
| RW012 | 128 |  |  |
| RW013 | 3 |  |  |
| RW014 | 3 |  |  |
| RW015 | 100 |  |  |
| RW016 | 4 |  |  |
| RW017 | 1000 |  |  |
|  | 10 |  |  |

S20LP, channel 1, target station No. is 3
Transfer size: 128 words
Self-station RW register Leading address: RW100
Target-station D register
Leading address: D1000
Response time limit: 1 second


## 2. Expanded Functions



When R0020 is ON, 128 words data starting with RW100 is transferred to D1000 and after of the T3H on which station No. 3 S20LP is installed.
When the operation is completed, the status is set in RW050 and instruction output comes ON.

## Note

- Keep the input ON until the output comes ON.
- This instruction becomes error complete in the following cases. (ERF = S0051 is set to ON)
(1) Target station No. is invalid. (for S20LP)
(2) Invalid register designation. (In case of $T$ and $C$ registers, $T \rightarrow T$ and $C \rightarrow C$ is only possible)
(3) Source/destination register address range is out of valid range.
(4) Destination register is write-protected.
(5) Response time-out is occurred.
(6) If expanded $F$ register is designated;
- when MMR setting is not made.
- when IC card is not installed.
- when IC card is used to store program.
- when IC card is write-protected. (for destination)
- By using SW067, register write-protect is available against SEND instruction of other T3H.

- Resetting the status register (operand $B$ ) is necessary at the first scan.
- When using the TOSLINE-S20LP or Ethernet module (EN311), read the manual for these network modules.


## 2. Expanded Functions

### 2.4.6 Network data receive (RECV)

## FUN 240 $\quad$ RECV $\quad$ Network data receive

## Expression

```
Input -[ A RECV B]- Output
```


## Function

This instruction reads the designated range of register data from another T3H through the network.
(Network: TOSLINE-S20LP or Ethernet)
The transfer source register (target-station) is designated by $A+5$ and $A+6$.
The transfer destination register (self-station) is designated by $A+3$ and $A+4$.
The transfer size (number of words) is designated by $A+2$. The maximum transfer size is 128 words (S20LP), or 485 words (Ethernet).
The designation method of the target-station is different between S20LP and Ethernet.
This instruction is also used for other functions of the Ethernet module. Refer to the Ethernet module (EN311) manual for detailed functions used for the EN311.

## Execution condition

| Input | Operation | Output | ERF |
| :---: | :--- | :---: | :---: |
| OFF | No execution | OFF | - |
| ON | During execution | OFF | - |
|  | Normal complete | ON | - |
|  | When error is occurred (see Note) | ON | Set |

## Operand

|  | Name | Device |  |  |  |  |  |  |  |  |  | Register |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Con- <br> stant | Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | S | L | R | Z | T. | C. | I | O | $\begin{array}{\|c\|} \hline x \\ w \end{array}$ | $\begin{array}{c\|} \hline \mathrm{Y} \\ \mathrm{~W} \end{array}$ | $\begin{gathered} \hline \mathrm{S} \\ \mathrm{~W} \end{gathered}$ | $\begin{aligned} & \hline L \\ & W \end{aligned}$ | $\begin{aligned} & \hline R \\ & W \end{aligned}$ | W | T | C | D | F | $\begin{gathered} \hline 1 \\ W \end{gathered}$ | $\begin{gathered} \hline \mathrm{O} \\ \mathrm{~W} \end{gathered}$ | I | J | K |  |  |
| A | Transfer parameter |  |  |  |  |  |  |  |  |  |  | $\sqrt{ }$ | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |
| B | Status |  |  |  |  |  |  |  |  |  |  |  | $\checkmark$ | $\checkmark$ | $\sqrt{ }$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |



Note) Parameters for the Ethernet varies depending on the request command. Above figure shows the parameters for the register read/write command (H0021). Refer to the EN311 manual.

|  | E | D C | B |  | 7 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B$ | Abn Busy | Status |  | 0 | TermSTS |  |
| $B+1$ | Transmission error information (if TermSTS is H0B) |  |  |  |  |  |

Inside the parameter:

| Transfer parameter | S20LP | Ethernet |
| :---: | :---: | :---: |
| MID (network type) | 2 | 3 |
| CH (channel of self-station) | 1 or 2 (max. two S20LP's on T3H) | 1 to 4 (max. four EN311's on T3H) |
| Target station No. | 1 to 64 | 0 (fixed) |
| Request command | 0 (fixed) | H0021: Register read/write (for other commands, refer to EN311 manual) |
| Transfer size (number of words) | 1 to 128 <br> (max. 84 words for T or C register) (designation across T511 and T512 is not allowed) | 1 to 485 <br> (max. 323 words for T or C register) (designation across T511 and T512 is not allowed) |
| Register type | H0000: XW/YW register <br> H0001: W register <br> H0002: LW register <br> H0003: RW register <br> H0004: D register <br> H0005: F register (CPU) <br> H**05: Expanded F register <br> (IC card, 8 k words/bank, ** is bank No. $01-\mathrm{OF}$ ) <br> H**06: Expanded F register <br> (IC card, 64k words/bank, ** is bank No. 01-02) <br> H0007: T register <br> H0008: C register <br> H0009: SW register |  |
| Leading address | Designates the leading register address to be transferred |  |
| Response time limit | ```Specifies the time limit of the response from target-station. (0.1 s units) When the bit F is set to ON, the following default value is used. S20LP ...... 4.1 s Ethernet ... 30 s``` |  |
| Target-station IP address | N/A | Designates the IP address of the target-station |
| Target-station UDP port No. | N/A | Designates the UDP port No. of the target-station |

## 2. Expanded Functions

Inside the parameter (cont'd):

| Status | S20LP | Ethernet |
| :---: | :---: | :---: |
| Abn | 0: Normal complete <br> 1: Error complete |  |
| Busy | 0: Initial state <br> 1: Transmission port busy |  |
| Status | 0: Initial state <br> 1: While send requesting <br> 2: While waiting response <br> 3: Complete |  |
| TermSTS | H00: Normal complete <br> H01: Register designation error <br> H02: Response time-out <br> H03: Parameter error <br> H04: Register write protect <br> H05: (Reserve) <br> H06: Module error (send time-out) <br> H07: No send channel <br> H08: Invalid station No. <br> H09: Transfer size error <br> HOA: Boundary error <br> H0B: Transmission error <br> HOC: I/O no answer error <br> HOD: IC card designation error <br> HOE: (Reserve) <br> H0F: (Reserve) | (Bit 7 indicates the error is occurred whether self-station or target-station. <br> 0 : Self-station <br> 1: Target-station |
| Transmission error information | When TermSTS is HOB, the error information is stored. (0 for other cases) For detailed information, refer to the S20LP or EN311 manual. |  |

## Example



| RW030 | 3 | 1 | 0 |
| :--- | :---: | :---: | :---: |
| RW031 | $33(\mathrm{H} 21)$ |  |  |
| RW032 | 200 |  |  |
| RW033 | 5 |  |  |
| RW034 | 5000 |  |  |
| RW035 | 4 |  |  |
| RW036 | 4000 |  |  |
| RW037 | 50 |  |  |
| RW038 | $H 71$ | H 85 |  |
| RW039 | H0A | H 62 |  |
| RW040 | 1024 |  |  |
|  |  |  |  |

Ethernet, channel 1
Request command H21: Register read/write
Transfer size: 200 words
Self-station F register
Leading address: F5000
Target-station D register
Leading address: D4000
Response time limit: 5 second
Target-station IP address:
133.113.98.10 = H85.H71.H62.H0A

Target-station UDP port No.: 1024


## 2. Expanded Functions

Ethernet


When R0030 is ON, 200 words data starting with D4000 of the T3H on which EN311 (IP address = 133.113.98.10) is installed, is read and stored in F5000 and after.

When the operation is completed, the status is set in RW060 and instruction output comes ON.

## Note

- Keep the input ON until the output comes ON.
- This instruction becomes error complete in the following cases. (ERF = S0051 is set to ON)
(1) Target station No. is invalid. (for S20LP)
(2) Invalid register designation. (In case of $T$ and $C$ registers, $T \rightarrow T$ and $C \rightarrow C$ is only possible)
(3) Source/destination register address range is out of valid range.
(4) Destination register is write-protected.
(5) Response time-out is occurred.
(6) If expanded F register is designated;
- when MMR setting is not made.
- when IC card is not installed.
- when IC card is used to store program.
- when IC card is write-protected. (for destination)
- By using SW067, self-station's register write-protect is available.

- Resetting the status register (operand $B$ ) is necessary at the first scan.
- When using the TOSLINE-S20LP or Ethernet module (EN311), read the manual for these network modules.

70 PROSEC T3H

TOSHIBA

TOSHIBA CORPORATION
Industrial Equipment Department 1-1, Shibaura 1-chome, Minato-ku Tokyo 105-8001, JAPAN
Tel: 03-3457-4900 Fax: 03-5444-9268

